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SUMMARY

Interconnect technologies are undergoing a revolution to meet the rapid growth in sys-

tem interconnection requirements. A number of 2.5-D and 3-D integration technologies

are being explored to integrate high-performance dice such as, CPU, FPGA, GPU, etc.

with memory. The mobile computing space is expanding its opportunities as well. In all

these configurations, while there are a number of benefits in communication bandwidth,

power efficiency, footprint reduction, there are important thermal, mechanical, and elec-

trical considerations that need to be addressed. To enable the design space exploration of

these systems from the perspective of temperature and power supply noise, a thermal and a

PDN modeling framework is presented. Various 2.5-D and 3-D heterogeneous integration

technologies are investigated and benchmarked for thermal and electrical performance and

inter-dependencies.

First, the use of flexible interconnects for thermo-mechanical reliability improvement

in interposer assembly is analyzed. The goal of this work is to explore the opportunity to

remove the secondary organic substrate from an assembled subsystem. Hence, a thermally-

induced warpage comparison between solder bumps and mechanically flexible intercon-

nects (MFIs) in an interposer-to-motherboard assembly is reported. Impact of chip size on

thermo-mechanical warpage and stress is also evaluated. A comprehensive MFI distribu-

tion technique utilized for improved thermo-mechanical reliability and a genetic algorithm

based structural optimization of MFIs are presented.

Second, power delivery network (PDN) modeling including advanced packaging of

voltage regulator modules is evaluated. Different 2.5-D integration technologies are bench-

marked. Specifically, a bridge-chip based 2.5-D integration technology is benchmarked

with and without a PDN in the bridg-chip. Both steady-state IR-drop and transient Ldi/dt

noises are reported.

Third, PDN modeling and benchmarking of fan-out wafer level packages (FOWLP) is

xxii



evaluated. Both multi-die FOWLP and 3D FOWLP technologies are benchmarked with re-

spect to corresponding flip-chip Ball Grid Array (FC-BGA) configurations. Power supply

noise results for both steady-state and transient-state simulations are presented. A compre-

hensive design space exploration of FOWLP technologies is performed.

Fourth, a new PDN architecture named ’backside PDN’ is benchmarked. The differ-

ences between backside and conventional front-side PDN configurations are introduced.

The power delivery performance of a backside PDN configuration is evaluated. Results

for different power maps are presented. Moreover, the modeling results are validated with

physical implementation results. A design space exploration is performed to analyze the

impact of package-to-die interconnection pitch, input pulse, capacitor density on PDN per-

formance. Additionally, thermal implications of dielectric bonding for a backside PDN

configuration are evaluated.

Lastly, a framework for thermal-PDN co-analysis is extended to evaluate bridge-based

2.5D integration technologies. Inter-dependencies between temperature distribution of the

dice in a package and the supply voltage noise are captured. Some thermal aspects of a

bridge-chip based 2.5-D integration are highlighted. Thermal-PDN frameworks for both

steady-state and transient-state PDN are presented. Impact of different interaction models

is characterized.
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CHAPTER 1

INTRODUCTION

The demand for data generated by different applications in machine learning, artificial

intelligence, internet-of-things, etc. is exponentially increasing, driving the need high-

performance computing systems. Fig 1.1(a) shows this trend and explosion of data [1].

This significant volume of data is driving the growth of data centers around the world.

Fig. 1.1 shows the electical energy consumed by data centers in the US[2]. Although the

growth in the number of data centers has decreased over the years, the increase is scale-out

and scale-up growth of large data centers is significant. In 2010, electricity used in data

centers globally was ∼1.5% of total electricity use. This consumption is ∼2% of total

electricity consumption in the US, as shown in Fig. 1.1. To this ends, there have been in-

novations in infrastructure, network, storage, and server platforms, which help reduce the

overall power consumption of data centers. While power savings is an important factor for

these data centers, heat removal is an additional challenge which adds significant overhead

cost. Cooling accounts for ∼30% of the overall power consumption of a data center [3].

For example, Microsoft reported that its under-water cooling project supports a 240 kW

data center [4]. The key components of these data centers are computing blocks or pro-

cessing units and storage units or memory. In order to keep up with the >TB bandwidth

requirements of rapidly evolving computing fabrics such as FPGAs integrated with server

class CPUs, several emerging integration technologies have been studied. Some of the

key heterogeneous integration technologies include interposer/bridge 2.5-D ICs [5, 6], 3-D

ICs [7], and fan-out wafer-level based packages including package-on-package (PoP) tech-

nology [8]. For example, the Stratix 10 FPGA currently integrates a large programmable

fabric and daughter dice, such as transceivers and High Bandwidth Memory (HBM), with

high-bandwidth EMIB links [9]. Further integration of Xeon CPU dice with FPGA dice
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into a single package could greatly enhance computing performance and efficiency for

many applications. Since this is still an ongoing research field, more innovative advances

are anticipated to be proposed in the near future. As such, the computing platforms are

migrating towards a modular based package design with compact heterogeneous integra-

tion of CPU, GPU, FPGA, memory, etc. Fig. 1.2(a) shows a system used for Microsoft

Bing search where FPGAs are used to accelerate the computations [10]. Fig. 1.2(b) shows

a heterogeneous interconnect fabric developed by Xilinx [11]. Fig. 1.2(c) shows a wafer

scale engine (WSE) where the whole wafer is used to make one single complete system

[12]. This WSE has 1.2 trillion transistors, 400k linear algebra cores, 18 GB of on-die

memory, 9 PB/sec of memory bandwidth across the chip, and separate fabric bandwidth

of up to 100 Pb/sec. Fig. 1.2(d) shows a 3-D package-on-package configuration devel-

oped by Intel [13]. Similar to these approaches, a semiconductor package may contain a

number of functionalities including but not limited to stacked memories, RF devices, ap-

plication processors, MEMS, power management ICs, etc. In these configurations, there

are important thermal, mechanical, and electrical considerations that need to be addressed.

As functionally-diverse dice are packed into a smaller space, the corresponding increased

thermal load is an added concern to the thermo-mechanical reliability of the solder joints.

Moreover, owing to these advanced technologies, the total power density is expected to

increase beyond 100 W/cm2 [14]; power delivery becomes a critical challenge, and ad-

vanced cooling solutions (for example, microfluidic cooling) are turning into a necessity

[15]. Fig. 1.3(a) shows the increase in per socket current requirement for the server chips.

Reduced noise margin determined by the scaling trend of the technology is making the

power delivery to the chip ever more challenging. Placing dice side-by-side, as shown in

Fig. 1.3, poses thermal coupling issues where heat flows from the high power die to the

low power die. Moreover, temperature, supply voltage, and power dissipation are depen-

dent on each other. The temperature impacts the leakage power and the power/ground grid

resistivity. Power dissipation determines the source current of the chip and is also the ex-
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(a)

2% of US electricity

(b)

Figure 1.1: (a) Annual data usage by 2025, (b) Power consumption by data centers

citation of the power delivery network (PDN) noise. However, the power supply voltage

impacts both leakage and dynamic power. Without considering the interactions between

each of the individual interaction models, for emerging architectures with increased power

density, the results from the standalone or partially integrated models could be overesti-

mated by as much as 30% [16]. Therefore, in this research effort, thermal-mechanical and

thermal-power interactions are investigated.
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(a) (b)

(c) (d)

Figure 1.2: (a) Microsoft FPGA accelerator, (b) Xilinx project EVEREST, (c) Cerebras
wafer scale engine, and (d) Intel Foveros 3-D integration

1.1 Current Relevant Research

The evolution of different 2.5-D/3-D integration technologies brings about a number of

challenges. Thermo-mechanical reliability, thermal integrity, power integrity, etc. are a

few of them. Significant research effort has been put to address these challenges. Some of

the noteworthy efforts are delineated in the section below.

1.1.1 Heterogeneous Integration Technologies

Heterogeneous integration technologies (2.5-D/3-D ICs) provide high-bandwidth density

and low-energy connectivity as well as ultra-small form factors. Table 1.1 summarizes

some key 2.5-D/3-D heterogeneous integration technologies. Silicon interposer has shown
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(a)

(b)

Figure 1.3: (a) ITRS projection for server current, (b) Thermal coupling between dice
placed on the same package

its potential in 2.5-D integration [20, 21, 22, 19]. Fig. 1.4(a), 1.4(b), 1.4(c) show three

such interposer based products offering 348 GBps of aggregate bandwidth, 512 GBps of

memory bandwidth, and 160 GBps CPU-to-GPU NVlink bandwidth, respectively. This

technology provides high density die-to-die interconnections. Alongside, this fabric also

provides additional spread of current for power delivery [5]. Interposer is also utilized for

3-D integration technologies. However, owing to the increased power density [14], while

interposers are being widely used for 2.5-D integration technologies [23, 22], their use in

3-D ICs is primarily limited to the memory devices [24, 25]. Some other noteworthy 2.5-D

integration technologies are Intel’s Embedded Multi-die Interconnect Bridge (EMIB) [26],

Georgia Tech’s Heterogeneous Interconnect Stitching Technology (HIST) [27], and imec’s

fan-out based bridging concept [6], as shown in Fig. 1.5. These bridging technologies

increase the die-to-die signaling bandwidth while eliminating the ‘reticle limitation’ of the
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Table 1.1: Key heterogeneous integration technologies

Silicon
interposer
[17]

EMIB [18] Bridge-
chip [6]

Foveros
[13]

Chip stack-
ing [19]

Interconnection
method

2.5-D 2.5-D 2.5-D 2.5-D & 3-
D

3-D

I/O structure Bump Bump Bump Bump &
Bump

Bump

Pitch 30-60 µm 55 µm 20 µm - >8 µm
Scalability Limited Scalable Scalable Limited Limited

Through-Silicon I 
Vias (TSVs) __j 

out 

1111 IJlij :!,,.un,p 
.,., ... 
1111111 

ijiiiii 
••••••• 

1111111 
••••••• 

I I I I GPU/(PU/Soc Die 

. .. . . . . .. . . . 

(a) (b) (c)

Figure 1.4: (a) Xilinx FPGA with interposer, (b) AMD GPU with HBM, and (c) NVIDIA
GP100

interposers.

Recently, Fan-out Wafer Level Packaging (FOWLP) technology has shown its poten-

tial to significantly miniaturize the package[28]. The advantages of FOWLP technology

are not only related to a significant package miniaturization in the lateral directions, but

it also reduces the package thickness significantly. Package I/Os are redistributed across

the entire package including the fan-out region outside of the silicon die for increased pin

count at the package level. The absence of the substrate reduces the thermal resistance of

the package, increases the electrical performance owing to the shorter interconnections and
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Figure 1.5: (a) Intel EMIB technology, (b) Georgia Tech HIST platform, and (c) imec
bridge technology

lowers parasitic effects. FOWLP offers as low as 8x reduced PDN impedance compared to

a flip-chip pakcage [29]. Moreover, 3-D FOWLP, like conventional package-on-package

(POP) configurations, enables added functionalities and miniaturization in the third dimen-

sion. TSMC’s FOWLP technology shows 20% reduction in package thickness compared to

a flip-chip package [8]. FOWLP has been under extensive investigation in recent years [28,

8, 30, 31, 32]. Some noteworthy examples include TSMC’s Integrated Fan-out wafer level

packageing (InFO WLP) [8], Infineon’s embedded Wafer Level Ball Grid Array (eWLB)

[31], and Freescale’s Redistributed Chip Package (RCP) [32].

While heterogeneous integration is pushing for modular based package designs, recent

trends indicate that a single die itself can be heterogeneous in nature [33] where different

computing blocks are fabricated with different technology nodes. Besides, there is also co-

integration of voltage regulators, inductors, etc. in the same package. In recent years, on-

chip regulators have gained significant attention because of their fine grain voltage control,

increased availability of power, increased performance, decreased inductor size, etc. [34,

35, 36]. An on-chip regulator with an inductor placed in the package is shown in [34]. A

2.5-D based integrated voltage regulator (IVR) where the inductors are placed right beneath

the chip is presented in [35]. These technologies eliminate the need for multiple VRs in the

7



case of multiple supply voltage systems while reducing the parasitic length of the power

delivery path, enabling active power management required by high-performance computing

devices.

1.1.2 Thermo-Mechanical Reliability Analysis for Advanced Packaging Technologies

Numerous heterogeneously integrated systems are being used to assemble chips side-by-

side, and thus allowing designers to put dice next to each other in a high-bandwidth, low-

energy configuration. For such a system, thermally induced warpage is an increasing con-

cern for device and interconnect reliability [37, 38, 39], as shown in Fig. 1.6. For example,

a 2.5-D interposer-based integration technology requires an organic package to minimize

the effects of CTE mismatch, employing Ball Grid Array (BGA) between the package and

the board, and C4 bumps between the package and the interposer [20, 21, 40, 41]. These

packages have multiple layers and typically use underfill to ensure the reliability of the C4

bumps between the package and the interposer. As functionally-diverse dice are packed

into a smaller space, the corresponding increased thermal load is an added concern to the

thermo-mechanical reliability of the solder joints [42, 43]. Thermally-induced warpage

also affects 3-D integrated systems as through-silicon-vias (TSVs) are subjected to me-

chanical stresses and strains [20, 21, 44]. Similarly, thermally-induced warpage may nega-

tively impact the coupling efficiency of optical grating couplers as this warpage offsets the

necessary alignment for high coupling efficiency [45, 46, 47, 48, 39]. For example, Wan et.

al. [39] reported a 25% reduction in diffraction efficiency for a 5.73o angular displacement.

This is an important consideration since silicon photonics is evolving as an enabling tech-

nology for high-performance computing which uses interlayer grating couplers for trans-

ferring optical signals between out-of-plane waveguides. Moreover, with the advancement

of semiconductor processes, there are innovative packaging solutions that increase the in-

terconnection complexity [22, 49, 50]. The International Technology Roadmap for Semi-

conductors (ITRS)[14] predicts the substrate-to-board pitch to be approximately 300 µm by
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(a) (b)

(c) (d)

Figure 1.6: (a) Solder joint crack, (b) Interconnect and via delamination, (c) TSV crack,
and (d) Grating coupler misalignment

2026, which may introduce numerous reliability concerns. ITRS also projects that the peak

package warpage limit, which occurs during the solder ball reflow process, to be as low as

50 µm for 300 µm pitch BGA. Therefore, it is critical to minimize warpage as warpage-

induced stress/strain only functions to negatively impact the reliability and performance of

a wide variety of systems and technologies. There have been significant prior efforts to

reduce substrate warpage. Raghavan et al. [51] outlined a temperature profile modification

and external mold technique to reduce warpage. Mikael et al. [52] showed the impact of

different process conditions from analytical and experimental data on substrate warpage.

They proposed solutions including a thicker insulator layer, thinner metal1/metal2 layers,

etc. in an effort to reduce warpage. Chaware et al. performed a reliability analysis of dif-

ferent underfill materials [21]. Murayama et. al, proposed possible solutions for warpage

control including chip first process, usage of underfill with low Tg, etc.[53].
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Compliant interconnects have been used to address some reliability issues generated

from the CTE mismatch between organic/ceramic packages and silicon die[54, 55, 56, 57,

58]. Recently, Mechanically Flexible Interconnects (MFIs), as shown in Fig. 1.7, have

(a) (b)

Figure 1.7: (a) Mechanically flexible interconnect (MFI) and (b) Compliance measurement
of MFI

been investigated as enablers for direct assembly of a Si interposer onto a motherboard to

achieve a smaller profile and better electrical performance [59]. Apart from reducing the

thermally induced warpage, MFIs could eliminate the secondary substrate in some appli-

cations, resulting in a smaller form factor, higher bandwidth, lower power, and shorter in-

terconnections. Flexible interconnect design and optimization are also carried out to tackle

CTE mismatch in bridging concepts, such as HIST [60, 61]. Moreover, component-level

optimization has been carried out in numerous studies [61, 62, 63]. The primary focus of

these studies is to design and optimize a single interconnect under a mechanical loading

condition. For example, in [61], the focus is MFI optimization under a nano-indentation

load. Multi-objective single interconnect optimization is carried out in [57]. However, de-

sign and optimization of a group of interconnects based on system level parameters, e.g.

thermal loading, is missing in the literature.
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1.1.3 Power Delivery Network Modeling for 2.5-D and 3-D ICs

Power requirements in modern high-performance computing systems are becoming in-

creasingly stringent. Such systems typically contain several cores [64] to tens of cores

[65] with multiple power supply domains [66]. Traditionally, the power supplies are placed

off-chip to provide necessary load currents to the on-chip active circuitry. These systems

typically have resistive and parasitic losses from the interconnects and metal pads. Large

passive components (i.e., capacitors) are placed to somewhat compensate these effects.

However, the power delivery challenges are becoming increasingly prominent as more and

more transistors are being packed into a single chip, which eventually translate to increased

load. A single package may include high-bandwidth memory with GPUs [25], FPGAs

with server processors [67], high-performance GPUs with general purpose CPUs [68],

etc. Despite the scaling of supply voltage in recent device technologies [69], these high-

performance integrated modules inevitably lead to higher current demand and increased

power density [58]. As a result, power delivery in high-performance digital systems is an

increasingly difficult challenge [70]. In an electronic system, there are resonances from

die-to-package, package-to-board, and board-to-supply interactions, as shown in Fig. 1.8.

Meeting the target frequency over a wide frequency range is becoming increasingly dif-

kHz MHz GHz
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𝐶𝑢𝑟𝑟𝑒𝑛𝑡

Bulk 
Capacitor

On-die Decoupling 
Capacitor

High Frequency 
Capacitor

Figure 1.8: Target impedance of a PDN and capacitor requirement for different frequency
ranges

ficult. Recently, on-chip regulators have gained significant attention because of their fine

grain voltage control, increased availability of power, increased performance, decreased

11



inductor size, etc. [34, 35, 71, 72]. An on-chip regulator with inductor placed in the pack-

age is shown in [34]. These technologies eliminate the need for multiple VRs in the case

of multiple supply voltage systems while reducing the parasitic length of the power de-

livery path, enabling active power management required by high-performance computing

devices. In short, these are efforts to bring the power supply circuitry closer to the active

circuits. There are a number of solutions to improve the efficiency and reduce the footprint

of the active portion of a PDN [36, 5] and, one has to rethink the on-die PDN design to

achieve the best out of both scaling trends and innovative packaging solutions. Specifi-

cally, scaling device technology poses several challenges. The resistivity and resistance of

conventional metal layers and inter-metal vias are increasing rapidly with advanced tech-

nology scaling [73, 74], while PDN noise margins are becoming stringent [75]. Moreover,

the power consumption of different computing blocks is increasing significantly [14, 76].

Power supply noise (PSN) negatively impacts the system performance; PSN induces clock

jitter, which exacerbates the performance of a computing block [77]. Modern processors

can create nanosecond level voltage droops that require different circuit techniques to en-

sure reliability. Moreover, advancement of the packaging technologies results in critical

interfaces, which increases PDN impedance. For example, in a silicon interposer based

2.5-D integration [78, 79], there is a tradeoff between using additional PDN grids in the

interposer to reduce PSN and added parasitics from the TSVs and microbumps. Likewise,

in bridge-based 2.5-D integration technologies (EMIB, HIST, etc.), signal interconnections

and I/O drivers are placed in the periphery of the dice. As such, the bridge may block the

direct access of the package power/ground planes to the periphery of the dice [5], which in-

creases the source-to-sink impedance for the die blocks in these regions. This effect is more

prominent in a CPU-HBM or FPGA-HBM configuration since HBMs are wide I/O config-

urations with concentrated connections in the center of the die. This increases the overlap

between a bridge-chip and the memory dice. While memory banks have power supply

through TSVs, the base logic die suffers from longer PDN paths owing to this overlap re-
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gion. Similar to bridge-chip configurations, FOWLP technologies have unique attributes

as well. For example, owing to the dense redistribution layers (RDLs) in the package, the

PDN in the RDLs is different from the power/ground planes in organic/ceramic package

PDN. Moreover, some FOWLP technologies use copper pillars instead of coarse C4 bumps

common in flip-chip packages. For all these innovative technologies, there is a need for

evaluating the PDN early in the design cycle before it becomes expensive to adopt any

changes in the latter stages.

Power supply noise (PSN) modeling has been under extensive research over the last

decades [87, 81, 83, 7]. Some noteworthy contributions in PDN modeling are summarized

in Table 1.2. DC IR-drop modeling of 2.5-D and 3-D integration systems is analyzed in

[87]. However, Ldi/dt transient analysis or dynamic IR-drop and impedance analyses are

missing in this work. DC and dynamic IR-drop is evaluated in [81]. However, the model

uses a lumped model for the package PDN, which makes it harder to model emerging

packaging technologies. Lumped model based PDN modeling is carried out in [83]. Recent

work also addressed the power integrity modeling of fan-out wafer level packages [29,

30]. Chou et. al [30], provided impedance, DC resistance, and transient analysis results

from experimentation. Wang et. al. [29], presented a power integrity model to investigate

the scope of integrated voltage regulators in fan-out wafer level technologies. Yang et.

al. [5] presented a PDN tool that can perform both steady state and transient analysis

with distributed on-die, package, and board model. Different technologies have unique

attributes which can negatively impact the PSN of a system. These efforts open the path

towards accounting for such attributes in a quick and accurate manner.

1.1.4 Thermal-PDN Co-Anaysis Modeling

In a tightly integrated system, if multiple dice are placed side-by-side, there can be signifi-

cant thermal coupling [7], as shown in Fig. 1.9. In 3-D ICs, owing to the vertical stacking,

the temperature profile of the low power dice becomes an image of the temperature profile

13



Table 1.2: Relevant PSN work in the literature

IR Tran-
sient

AC Distri-
buted
On-
die
PDN

Pack-
age
PDN

Board
PDN

VRM Multi-
VRMs

Die
conf-
igura-
tions

Pack-
age
de-
caps

Power
map

J.Xie
[80]

Yes No No Single-
layer
no
vias

Distri-
buted

Distri-
buted

No No 2.5/3-
D

N/A Non-
uniform

R.
Zhang
[81]

Yes Yes No Multi-
layer
no
vias

Lump-
ed

Lump-
ed

No No 3-D Lump-
ed

Non-
uniform

S.
Park
[82]

Yes Yes Yes Single-
layer
no
vias

Lump-
ed

Lump-
ed

Yes No 3-D Lump-
ed

Non-
uniform

X.
Zhang
[83]

Yes Yes No Lump-
ed

Lump-
ed

Lump-
ed

No No 2-D Lump-
ed

Non-
uniform

H.
He
[84]

Yes Yes Yes Single-
layer
no
vias

Lump-
ed

Lump-
ed

Yes No 3-D Lump-
ed

Uniform

Y.
Shao
[85]

Yes No No Single-
layer
no
vias

Distri-
buted

Distri-
buted

No No 2.5/3-
D

N/A Non-
uniform

C.
Pan
[86]

Yes Yes Yes Multi-
layer
with
vias

Distri-
buted

No No No 2.5/3-
D

Distri-
buted

Uniform

of the higher power die [88]. Typically, a thermal model and a PDN model provide mu-

tually exclusive results. However, there are inter-dependencies between these two models

that require special attention, especially for heterogeneously integrated 2.5-D and 3-D ICs

with advanced technology nodes. The inputs to a PDN modeling tool typically includes a

power model. The power model includes both the dynamic power and the leakage power

contributions of the active circuits. In an early analysis, the power is estimated based on
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Figure 1.9: Lateral thermal coupling between dice in an interposer based 2.5-D configura-
tion

Cache

Core Core

Memory (Bottom Die)

 

 

Tjunc

55

60

65

70

75

80

85

90

65

75

85

55

90

Chip #1

Package Substrate

Chip #2 Interposer

Interposer

200 µm

Processor

Interposer

Memory

Processor

MemoryProcessor

Memory

Figure 1.10: Vertical thermal coupling between dice in an 3-D IC configuration

Table 1.3: Relevant thermal-PSN co-simulation work in the literature

Analysis type Interactions
Y. Shao, J. Xie [85, 80] Steady Wire resistivity

Y.Liu [89] Steady Leakage power
H. Su [16] Steady Leakage power and dynamic

power
S. Park [82] Steady & Transient Leakage power and wire re-

sistivity
Y. Zhang [90] Steady & Transient Leakage power, dynamic

power, and wire resistivity

architectural tools and data sheets which provides power specifications at different temper-

atures. However, from a realistic thermal map, the temperature across a single die can be

different. Moreover, there are different thermal solutions [15] that can impact the temper-

ature, and hence, impact the performance of a system. The power model, temperature of

a die, and the PSN are interdependent. Fig. 6.1 shows the dependencies between power

dissipation, temperature, and PDN. The temperature impacts the leakage power and the

grid resistivity of the PDN. Conversely, the power supply voltage impacts both leakage
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and dynamic power. Without considering the interactions between each of the components

in Fig. 6.1 for emerging architectures with increased power density, the results from the

standalone or partially integrated models could be overestimated.

Figure 1.11: Thermal-PDN interaction models

Researchers have put efforts to address these inter-dependencies among different in-

teraction models [16, 80, 7]. Some of these efforts are summarized in Table 1.3. Xie et.

al. [80] studied the interaction between temperature distribution and the steady state IR-

drop. Su et. al. [16] studied the impact of temperature and supply voltage on the power

dissipation of the dice. Yang et. al. [7] incorporated the inter-dependencies of all the inter-

action models for a 3-D stacked processor-memory system. All these modeling techniques

are significant efforts to address the issues related to the advanced technologies. However,

investigation of 2.5-D technologies from the co-analysis perspective is missing in the litera-

ture. Also, most of the prior works mentioned in this section do not account for both steady

state and transient analysis. With a complete and comprehensive thermal-PDN co-analysis

tool, the state of the art design methodology will gain added momentum and reduce the

design space significantly before moving to the full design cycle.

1.2 Organization of This Thesis

This document is arranged as follows:
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• Chapter 2: This chapter explores different means by which both interconnect reli-

ability is improved and interposer warpage is decreased for an interposer-on-board

integration using mechanically flexible interconnects (MFIs). Central to this explo-

ration is the design and distribution/orientation of the MFIs on the interposer. Using

Finite Element based tool ANSYS, different MFI distributions and configurations

are investigated. Using MFIs for interconnection, a minimum 43% improvement in

warpage is reported. Employing a genetic algorithm based structural optimization

technique, greater than 50% reduction in MFI stress is presented.

• Chapter 3: We present a PDN modeling framework with a focus on multi-die het-

erogeneous integration. We show the detailed formulation and analysis methods in

this chapter. A design space exploration of power delivery networks is performed

for 2.5-D and 3-D integrations. This chapter focuses on PDN modeling of different

2.5-D configurations including interposer and bridge-chip based technologies. We

show that by splitting a bridge-chip into multiple smaller bridge-chips, on-die PDN

impedance can be reduced. We also study these scenario with a PDN in the bridge-

chip. If we use PDN in the bridge-chip, the DC IR-drop can be reduced by more

than 20% compared to a configuration excluding a bridge-chip PDN. This chapter

also includes a study regarding effective placement of the voltage regulator modules

(VRMs) for power supply noise (PSN) suppression. Multiple on-package VRM con-

figurations have been analyzed and compared. Additionally, 3-D IC chip-on-VRM

and backside-of-the-package VRM configurations are studied. We also study the

thermal implications of different VRM placements. We observe a steep rise in tem-

perature when we place the VRM on the backside of the package. We also perform a

study to evaluate the power excitation limit of different configurations for a specific

PDN noise level.

• Chapter 4: We present a PDN modeling framework for Fan-out Wafer Level Packag-
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ing (FOWLP) technologies with a focus on multi-die heterogeneous integration. Re-

sults are compared to conventional multi-die packaging and 3D package-on-package

technologies. Owing to the shorter interconnections enabled by thinner packages

and elimination of large C4 bumps with copper pillars, the package contributes less

parasitics to the PDN path. Hence, the IR-drop, transient droop, and impedance are

reduced in the evaluated FOWLP technologies. We perform a design space explo-

ration to investigate the impact of different design parameters: BGA pitch, metal

layers, via distribution, copper pillar pitch, etc. on PSN.

• Chapter 5: We present a PDN modeling framework for backside PDN configura-

tions. A backside PDN approach separates the PDN from a conventional signaling

network of the back-end-of-the-line (BEOL) and improves power integrity and core

utilization. We benchmark this technology with conventional front-side BEOL PDN

configurations. Owing to the lower resistivity compared to Cu metal lines for ad-

vanced technology nodes, we use Ruthenium (Ru) based buried power rail for PDN

modeling. The framework results are validated with a place-and-route (P&R) based

physical implementation flow. We quantify the area improvement in the actual flow

and observe 25%-30% improvement in the backside PDN configuration. Moreover,

we investigate the impact of package-to-die interconnect pitch, metal-insulator-metal

cap density, and input pulse on PDN performance. Additionally, we perform thermal

modeling to analyze thermal implications of a backside PDN configuration.

• Chapter 6: We present a PDN modeling framework for heterogeneous 2.5-D inte-

gration platforms. Both steady state and transient state (Ldi/dt) noise analyses have

been presented for a conventional multi-die package and a bridge-chip based pack-

age. Compared to thermal-PDN co-simulations, we observe a 10-12% overestima-

tion in the steady state temperature and IR drop results and a 20% overestimation in

the Ldi/dt noise in standalone PDN simulations without thermal impacts.
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• Chapter 7: This chapter presents the conclusions and summary of this thesis; future

research topics are also discussed.
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CHAPTER 2

THERMOMECHANICAL ANALYSIS AND PACKAGE LEVEL OPTIMIZATION

OF MECHANICALLY FLEXIBLE INTERCONNECTS (MFIS) FOR

INTERPOSER-ON-MOTHERBOARD ASSEMBLY

Motherboard

Interposer
Die-1 Die-2

MFI

Bumps

Figure 2.1: MFI-enabled large integrated system with interposer-on-motherboard

In this chapter, we perform a thermomechanical analysis of MFI-interposer assembly.

The goal of this work is to extend the component-level optimization methodology pre-

sented in [63, 62, 61] to the optimization of interconnects in an assembled subsystem,

which includes printed circuit board (PCB), a silicon interposer, and a large number of

MFIs between the interposer and the motherboard, as shown in Fig. 2.1. First, we report

an MFI distribution configuration to reduce MFI stress and also discusses a package-level

optimization process. Moreover, a thermally-induced warpage comparison between solder

bumps and MFIs in an interposer-to-motherboard assembled system is reported. Next, we

describe the impact of chip size on thermo-mechanical warpage and stress. We show a com-

prehensive MFI distribution technique utilized for improved thermo-mechanical reliability.

Finally, we investigate the impact of MFI pitch on thermo-mechanical reliability.

20



Table 2.1: Simulation setup

Parameters
Interposer size 1 cm × 1 cm

Interposer thickness 100 µm
PCB thickness 1000 µm

Solder bump/ MFI height 110 µm
Solder/MFI pitch 400 µm

2.1 MFI Orientation and Package Level Optimization for Reduced Stress and Warpage

2.1.1 Simulation Specifications

The overall specifications of the test vehicle are specified in Table 2.1

MFI Configuration
31 µm 153 µm 

13.28 µm 

30 µm 

60 µm 

54 µm 
108  
µm 

19 µm 

19.6 µm 

31 µm 153 µm 

13.28 µm 

30 µm 

60 µm 

54 µm 

108  
µm 

19 µm 

19.6 µm 

(a)

70 µm 

31 µm 

9 µm 

(b)

Figure 2.2: (a) top view, (b) side view of an MFI.

The overall dimensions of the baseline MFI are shown in Fig. 2.2. These dimensions

are based on [59] and considered as the initial design for the analysis. NiW is chosen as the

interconnect material because of its relatively high yield strength of 1930 MPa[91]. The

MFIs are 9 µm thick and have a standoff height of 70 µm. The MFIs are permanently

bonded, as is done in [92], to the interposer with a 30 µm diameter and 31 µm tall tip. As

these interconnects are to be compared with solder bumps between the motherboard and the

interposer, the total height for both the solder bump and the MFI is 110 µm. The purpose
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of this study is to compare the thermo-mechanical performance of the MFI assembly to the

solder bump assembly.

MFI Orientation

(a) (b)

Figure 2.3: MFI distribution with (a) baseline orientation (b) radial orientation

Fig. 2.3 shows the overall MFI distribution for two different MFI orientations. In the

baseline orientation design, as seen in Fig. 2.3(a), MFIs are distributed across the board

in an array-like fashion. Different orientations were also implemented that consider the

spring-like structure of the MFI. Specifically, since the MFI design under consideration

has a greater in-plane compliance in the direction of its anchor-to-tip and since interposer

warpage is largest along the substrate diagonal, aligning the MFIs from anchor-to-tip along

the substrate diagonal may reduce the stress in the MFIs during warpage. Following this

same logic, a radial orientation design, as shown in Fig. 2.3(b), is also implemented where

the interposer is evenly broken into four symmetric sections. For each quarter, the MFIs

are distributed along the direction of the substrate diagonal.

Because of the symmetry of this configuration, only one quarter of the whole assembly

is considered for FEM simulations in ANSYS Workbench. Fig. 2.4 shows the overall
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Figure 2.4: Boundary condition for the simulations. Only the interposer is shown. The
MFIs (not shown in the figure) are on top of the interposer

boundary conditions. The point at the origin is considered fixed and the two orthogonal

planes that pass through the origin are assumed to have no displacement in the direction

normal to the corresponding plane (e.g. the X-Z plane in Fig. 2.4 has no displacement in

the Y direction). In the figure, the red lines designate the two lateral axes of symmetry. The

whole assembly is cooled down from 160oC to room temperature (25oC). The resulting

steady-state warpage and stress are compared and analyzed.

2.1.2 Meshing Profile

The ANSYS built-in adaptive meshing mechanism is adopted to ensure high fidelity simu-

lations are performed during the optimization processes. Fig. 2.5 shows von-Mises stress

results from two loops of mesh refinement, where the mesh adaptively grows finer and finer

for MFIs in the baseline orientation setup. As seen in Fig. 2.5, adaptively increasing the

number of mesh elements to almost twice the number of mesh elements found in the initial

mesh changes the max von Mises stress by less than 5 %.
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Total no. of mesh elements: 253260  
Maximum stress: 3107 MPa 

(a)

Total no. of mesh elements: 445330  
Maximum stress: 3243 MPa 

(b)

Figure 2.5: Worst case MFI stress distribution with adaptive meshing (a) Initial meshing
and (b) denser meshing

Table 2.2: Material properties

Material Young’s Modulus (GPa) CTE (ppm/oC)
FR4 24 16

Silicon 130 2.7
SAC305 50 23.5

NiW 180 13
Copper 120 17.3

2.1.3 Thermally Induced Warpage and Stress Results

As a first step, the design incorporating MFI baseline orientation is compared with a solder

bump assembly. In the latter case, the bumps are 170 µm in diameter, 110 µm tall, and

400 µm in pitch. The dimensions and pitch of the solder bumps are in accordance with

[93] and the MFI dimensions noted in the previous section. Material properties used in

the simulations are shown in Table 2.2. FEM simulation results for substrate warpage and

MFI max von Mises stress are summarized in Fig. 2.6 for both MFI and solder bump

configurations. In Fig. 2.6, each temperature data point is a standalone FEM simulation

result, i.e., for each temperature data point in Fig. 2.6, the whole assembly is cooled down

from the specified temperature to 25 oC. As expected, thermally induced warpage for solder

bump assembly is much larger compared to that of the MFI assembly. Thermally-induced

stress in the MFIs is also quantified. The worst-case stress increases monotonically with
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Figure 2.6: Thermally induced warpage and stress results for different configurations

increasing temperature. The maximum warpage is along the diagonal of the interposer and

the maximum stress is in the MFI located at the farthest corner. At temperatures above

110oC, the maximum von Mises stress in the NiW MFI exceeds the yield strength of NiW

and hence, plastic deformation occurs within the MFI. Given such important contributing

factors, comprehensive design strategies such as the radial orientation described earlier

are necessary to ensure that the MFIs will maintain reliable interconnections after being

subjected to high temperature conditions.

2.1.4 Radially Oriented MFI Distribution

Fig. 2.7 shows the radially oriented MFI distribution scheme employed in the simulations.

As shown in the figure, the maximum stress in the MFIs is 1717 MPa. Simply using this

orientation method results in a 45% reduction in maximum von Mises stress (compared

to the baseline orientation case). This result will be referred to as the ‘unoptimized radial

orientation’ case for the rest of the chapter. As expected, the maximum MFI displacement
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Maximum stress: 1717 MPa 

Center 
point 

Figure 2.7: MFI distribution along the diagonal of the interposer

is along the diagonal. We also characterized the in-plane displacement of the MFIs, which

is also called lateral displacement along the X and Y axes. The in-plane displacement of

the MFIs is very minimal (0.04 µm).

2.1.5 System Level Optimization Methodology

Radial orientation improves the thermo-mechanical reliability of the system. To further im-

prove this reliabilty, in this study, an interconnect optimization technique has been consid-

ered along with the different orientation methodologies. By engineering the MFI geometry,

the stress distribution can be improved to reduce the overall maximum stress value. Since

the warpage of an assembled system includes many different force vectors exerted upon

each individual off-chip interconnect, it is difficult to simulate all of these external forces

on a single MFI. Therefore, rather than optimizing a stand-alone MFI and attempting to

simulate the correct environmental stimuli, we optimize the MFI geometry via modeling

the entire assembled system. The general flow diagram for the methodology is specified

in Fig. 3.1(b). A single MFI (‘master’) with all the parameter variables is placed on the

board near the origin of the coordinate system (i.e. center of the board). A distributed
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Figure 2.8: Flow diagram for optimization methodology

array of MFIs is generated based on the master MFI design and distributed according to the

technique described in the previous section. A Genetic Algorithm(GA) based optimization

tool from ANSYS is utilized for the optimization process [61]. Permanently-bonded in-

terconnects have many factors to consider, e.g. substrate material, interconnect materials,

substrate thickness, size of the chip, temperature cycle, in-plane forces/displacements, and

out-of-plane forces/displacements. In this chapter, either maximum interposer warpage,

maximum MFI stress, or both are taken into account as optimization objectives. The opti-

mization methodology begins with a parametrization of our initial design, as seen in Fig.

2.9(a). This parametrization includes different widths, lengths, and radii of certain regions

of the MFI body. These parameters are used as inputs to our optimization problem. A

variation of these parameter inputs, which effectively modifies the geometry, results in dif-

ferent outputs that we wish to optimize. In this case, these outputs include the maximum

von Mises stress of the worst-case MFI and the maximum warpage deformation of the

die/interposer/package. After selecting the lower and upper limits for the input and output

objectives, a design of experiment (DOE) is developed that attempts to thoroughly explore

the design space to form a strong basis upon which the optimization process builds from.
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Specifically, an optimal space filling DOE is used. Finally, a direct optimization process is

employed that simultaneously minimizes both the maximum von Mises stress in the MFIs

and warpage in the interposer. Ultimately, the optimization process results in many Pareto-

optimal solutions from which one among them is chosen according to the objectives that

we prioritize (minimizing warpage over minimizing MFI stress for example). After run-

ning the process for multiple generations, the optimization process tends to preferentially

select better designs that fulfill system-level parameter objectives, ultimately converging

to optimized MFI designs. A number of different parameters can be incorporated into the

optimization process, e.g., electromigration, electrical behavior, creep analysis [94], etc.

This chapter presents a methodology that has been adopted to address stress/warpage con-

siderations. However, this methodology can be applied to other objectives as well.
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(a)
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Figure 2.9: (a) Initial design and, (b) Optimized design of MFI

Fig. 2.9(b) shows the optimized MFI structure after the optimization process. As seen

in the figure, the optimized geometry of the MFI has changed during the optimization

process, hence leading to an interconnect structure that is more mechanically robust and

reduces the interposer warpage. The maximum von-Mises stress of this optimized worst-

case MFI is shown in Fig. 2.10. As seen, the maximum stress is along the neck of the MFI,

which is also the case for the initial MFI. It is likely that the optimized design distributes

stress more evenly in this region compared to its predecessor, which is, in part, why max-

imum stress is decreased. The stress is reduced to 1511 MPa from an initial stress value
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Maximum stress: 1511 MPa 

Figure 2.10: Stress distribution in worst case MFI for optimized design

of 1717 MPa in the unoptimized radial orientation case (Fig. 2.7), a 12.0% reduction in

maximum stress. Compared to the baseline orientation case (Fig. 2.6), this improvement

translates to a 51.3% decrease in maximum stress.

2.2 Impact of Interposer Size on Thermo-Mechanical Reliability
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Figure 2.11: For different interposer sizes, (a) warpage comparison between different con-
figurations and, (b) worst case MFI stress

The simulation setup is applied to interposers with different sizes maintaining the same

thickness of 100 µm to investigate the reliability issues resulting from interposer size vari-

ation. As is evident from the previous sections, stress can be minimized using different
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orientations and optimization methods. In this case, a comparison study is performed be-

tween the MFI assembly and the solder bump assembly. Along with the 10 mm × 10 mm

interposer, smaller (7.2 mm × 7.2 mm) and larger (20 mm × 20 mm) cases have been

used to emulate different applications. In each of the cases described above, the MFI and

solder bump pitches are maintained at 400 µm. The MFIs are distributed using the radial

distribution methodology described in the previous section. According to Fig. 2.11(a), as

the interposer size increases, the reduction in warpage using MFIs becomes more promi-

nent. For the smallest interposer case, 17% reduction in warpage is seen whereas for the

largest interposer, 57.4% reduction is observed. Specifically, in the solder bump assembly,

the warpage is 132 µm, which is more than twice the requirement set by ITRS. On the other

hand, MFI assembly results in 56.18 µm deformation, which is lower than the limit. The

latter case can be further improved, if necessary, by running a warpage-specific optimiza-

tion, which we ignore here. For each of the interposer size cases, worst case MFI stress

analysis has also been carried out in Fig. 2.11(b). The gap between maximum stress and

NiW yield strength is defined as ‘stress headroom’. As interposer size increases, the overall

displacement along the diagonal also increases, which results in higher stress. Hence, for

larger interposers, the stress headroom is expected to be smaller. However, the maximum

stress remains below the limit specified by the yield strength.

2.3 MFI Orientation (Radial) Along the Thermal Expansion/ Contraction Contour

In the design with radially distributed MFIs, the MFIs are oriented along the diagonal of the

interposer. With only isotropic thermal expansion, this is sufficient to improve the thermo-

mechanical performance of the system. However, in more pragmatic considerations, the

expansions are mostly anisotropic. This expansion can be decomposed into planar expan-

sion and vertical deformation. Because of the spring like behavior of the specified initial

cases, the MFIs are better suited to handle the deformations along their axis (i.e. parallel

to the vector connecting the anchor and the tip). In the radial orientation case, the overall
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Figure 2.12: MFI distribution following the deformation contours

stress will decrease; but the worst case MFI may no longer be located along the interposer

diagonal. As a result, these off-diagonal MFIs may still experience larger in-plane dis-

placement which contributes to additional stress. One of the solutions to this problem is to

design MFIs for better in-plane compliance for all directions at the cost of worse out-of-

plane compliance. A comprehensive approach has been taken in this analysis to exploit the

full advantage of the higher out-of-plane compliance of the MFIs. The thermal expansion

or contraction patterns of the interposer are taken into account to better distribute the MFIs.

The scheme is carried out and described in Fig. 2.12.

The optimized MFI structure is shown in Fig. 2.13(a). The basic parameter variables

that have been modified by the optimization process are specified in the figure as well. Fig.

2.13(b) shows the overall stress distribution of the worst case MFI, which is located along

the diagonal of the interposer. As can be seen from the figure, the maximum stress is further

reduced to 1363.2 MPa, representing a 10.25% improvement compared to the optimized ra-

dial orientation case (Fig. 2.7) and a 56.3% improvement compared to the baseline design.

As described earlier, the optimization process can be carried out to optimize either stress
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21 µm 
17 µm 

156 µm 

56 µm 

(a)

Maximum stress: 1363.2 MPa 
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Figure 2.13: (a) Optimized MFI structure and, (b) worst case MFI stress distribution

Figure 2.14: Interposer maximum warpage and MFI maximum stress tradeoff

or warpage or both. Accordingly, a multi-objective optimization process was attempted for

minimizing both stress and warpage. Fig. 2.14 shows the overall tradeoff trend between

warpage and stress minimization. It is hypothesized that the more compliant interconnects

tend to mitigate warpage since they can more easily move in the necessary directions to

effectively transfer the strain from the interposer to the MFIs. This strain transfer has the

effect of lowering the interposer warpage while increasing the stress in the MFIs. From the

final Pareto front observed in Fig. 2.14 (Pareto-optimal front-1), the designer can choose

which Pareto-optimal solutions best fit their scenario. In this case, the chosen designs are

the solutions which minimize interposer warpage without inducing plastic deformation in
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Table 2.3: Interposer warpage and worst-case MFI stress for different MFI orientations

Parameters Baseline MFI
Orientation

Radially
Distributed

MFIs
(optimized)

Modified
Radial

Distribution
of MFIs
(stress-
focused

optimization)

Modified
Radial

Distribution
of MFIs

(warpage-
focused

optimization)

Interposer Size 10 mm×
10 mm

10 mm×
10 mm

10 mm×
10 mm

10 mm×
10 mm

MFI Pitch 400 µm 400 µm 400 µm 400 µm

Interposer Warpage
with MFIs

22.4µm 26µm 25µm 24.217µm

Warpage reduction
with MFIs

compared to solder
bump case

50.68% 42.75% 44.96% 46.7%

Maximum MFI
Stress

3107MPa 1511MPa 1363MPa 1479MPa

Minimum MFI
Stress headroom
relative to NiW
yield strength

-61% 21.7% 29.37% 23.37%

the NiW MFIs. Since we are assuming a NiW yield strength of 1930 MPa, the MFI struc-

ture with the highest stress that is below 1930 MPa has been selected, minimizing interposer

warpage while avoiding any plastic deformation of the interconnects. This chosen design

is seen in Fig. 2.14 and reported below. Although the yield strength of NiW has been

used as the cut-off criteria in choosing optimized MFIs, it might very well be acceptable to

choose interconnects that will plastically deform, and perhaps this might even be preferred

since it would lower the interposer warpage even further. For simplicity however, plastic

deformation has been neglected in this study.

Both warpage-centric and stress-centric optimization have been performed. From the

warpage-centric run, maximum MFI stress increases minimally but the interposer warpage
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decreases. All results from the relevant FEM simulations are summarized in Table 2.3

and obtained from Fig. 2.14. For simplicity, only the 10 mm × 10 mm interposer

cases are shown in the table. These results follow the tradeoff pattern that was outlined

in Fig. 2.14. With respect to all MFI designs (including optimized designs) and config-

urations/orientations, the minimum improvement among these relative to the solder bump

assembly case, is 42.75%. After optimization, the minimum reduction in MFI maximum

stress compared to the baseline design is 51.3%.

2.4 Impact of MFI Pitch on Warpage and Stress

54.69μm 

65.7μm 

400μm 

45μm 

63.77μm 

600μm 

51μm 

80μm 

1000μm 

48.44μm 

67.77μm 

1200μm 

Figure 2.15: Optimized MFI shape for different pitches

Throughout the chapter, an MFI pitch of 400 µm is evaluated. However, conventional

board level solder bump pitches can be greater than 1 mm. In this section, different MFI

pitches have been investigated as part of a sensitivity analysis to determine the impact of

increasing MFI pitch from a thermo-mechanical reliability point of view. Four different

pitches of 400 µm, 600 µm, 800 µm and 1200 µm are simulated. For each case, a radial

MFI distribution following the expansion/contraction contours is used. Due to the fixed

size of the interposer, the number of MFIs varies for each case. The MFI optimization
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process has been run for each individual case. Fig. 2.15 describes the shape of the MFIs

for different cases showing some parameter variations.

Fig. 2.16 shows the overall FEM simulation results for different pitches. As MFI pitch
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Figure 2.16: Optimized MFI warpage and stress for different pitches

increases, the number of fixed connections between the interposer and motherboard de-

creases. This eventually reduces the overall warpage of the interposer, but thermal load per

MFI increases as well, resulting in higher maximum stress in the MFIs. Despite the addi-

tional stress, the maximum stress among all four cases is 17.2% less than the NiW yield

strength.

2.5 Conclusion

In this chapter, we present a thermomechanical analysis of MFI-interposer assembly where

the interposer is directly assembled on the motherboard. We compare the results with a

conventional solder bump based assembly. For the MFI assembly, a minimum of 42.75%

improvement in warpage is shown. This impact becomes larger as interposer size increases.

Only permanently-bonded MFIs have been considered for the analyses. Rematable contact

MFIs (e.g., not permanently-bonded) would reduce interposer warpage further. Simply

changing the orientation of the MFIs along the diagonal of the interposer results in a 51.3%
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improvement in MFI stress compared to the baseline MFI orientation case. Both stress-

centric and warpage-centric optimization have been investigated and a tradeoff analysis

has been performed. An MFI distribution technique has been employed following the in-

terposer expansion/contraction contour, which further reduces the stress on the intercon-

nects. This orientation also reduces interposer warpage. Finally, a sensitivity study of the

MFIs has been performed to investigate the impact of different MFI pitches on thermo-

mechanical performance.
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CHAPTER 3

POWER DELIVERY NETWORK MODELING FOR EMERGING

HETEROGENEOUS INTEGRATION TECHNOLOGIES AND DESIGN SPACE

EXPLORATION OF POWER DELIVERY INCLUDING VOLTAGE REGULATOR

MODULES

There is an increasing interest in heterogeneous integration of multi-functional dice into a

single package. These high-performance integrated modules inevitably lead to higher cur-

rent demand and increased power density [7] despite the down-scaling of supply voltage

in recent device technologies [69]. As a result, power delivery in high-performance digital

systems is an increasingly difficult challenge [70]. Moreover, in order to maintain, if not

improve, the performance of heterogeneously integrated dice compared to monolithic inte-

gration, one must carefully consider the interconnect channels in emerging heterogeneous

integration platforms. Before taking full advantage of emerging 2.5-D and 3-D integration

technologies, we must first understand and address the challenges of the power delivery net-

work (PDN) and power supply noise (PSN). Specifically, 2.5-D integrated electronics have

several unique attributes that require modeling and benchmarking. For example, in a silicon

interposer based 2.5-D integration [95], using a PDN grid on the interposer will enhance

current spreading; however, overall impedance of the interposer PDN may increase if the

parasitics of the TSVs and microbumps are large enough to offset the resistance decrease

of the PDN grid. Likewise, for Embedded Multi-die Interconnect Bridge (EMIB) or sim-

ilar bridge-chip based technologies, signal interconnections and driver circuits are placed,

generally, on the peripherals of the dice and above the die-to-die interconnect carrier (i.e.,

bridge-chip), which may lead to less power/ground (P/G) C4 bumps that are connected to

the package-level power/ground planes. Therefore, in this chapter, a power delivery net-

work modeling framework is presented. Several emerging 2.5-D integration technologies
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are benchmarked for power delivery. Moreover, a design space exploration of power de-

livery with VRM placement study is reported. Section 3.1 to 3.3 are based on the work

reported in [5, 96]; this methodology is the foundation of all the PDN research reported in

this thesis.

3.1 Modeling Methodology

Fig. 3.1(a) shows the PDN structure of an IC. Unlike most prior work [70, 83, 81] that uti-

lizes a lumped package model, we implement a distributed package-level PDN model to re-

flect the spreading effects of current in the package and the coupling between different P/G

bumps. This is critical in multi-die packaged systems in which dice share the package-level

PDN planes. Fig. 3.1(b) presents the flow diagram for different analysis types: steady-state

IR-drop analysis and simultaneous switching noise based transient analysis. The analysis

begins with the generation of the RLC network models of the board, package, and on-die

PDNs. Subsequently, these models are combined to solve for nodal voltages and branch

currents. Each step is detailed in the following subsections.

3.1.1 Board-Level PDN

In this model, we do not explicitly model the VRM; instead, we assume an ideal Volt-

age Regulator Module (VRM) that is supplying a stable voltage and use a lumped resis-

tor/inductor network to model the board-level current spreading. Moreover, the equivalent

series resistance (ESR) and inductance (ESL) of the board-level decoupling capacitors are

included in the model.

3.1.2 Package-Level PDN

Fig. 3.2 shows the detailed distributed package-level PDN model. The package power/ground

planes are modeled as two layers, where the bottom layer is connected to the motherboard

by BGAs, and the top layer is connected to an on-die PDN by C4 bumps. Each node in the
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Figure 3.1: (a) The PDN modeling hierarchy. From left to right: lumped model of the
board-level PDN, distributed model of the package-level PDN, and the distributed model
of the on-chip PDN. (b) Flow diagram of the PDN analysis showing different steps of the
framework.

two layers is connected to six adjacent nodes using a resistor-inductor pair either due to the

package traces or inter-layer vias. It is assumed that the surface mounted decaps are only

connected to the top layer in the designated areas.

Each Rsp and Lsp pair in the distributed model represents the current spreading effects,
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Figure 3.3: The on-die PDN model. Only one current source and one C4 bump is shown.

while eachRmnt, Cmnt and Lmnt set of values represent a surface mounted decap, as shown

in Fig. 3.2. For bump inductance, LC4, we consider both self and mutual inductances,

where the mutual inductances are assumed to be dominated by the nearest 8 neighbors

[97].

3.1.3 On-Die PDN

On-die PDN consists of several metal layers, where the power/ground wires are parallel to

each other in each layer, but each layer is orthogonal to the layer below/above it (interleaved
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Figure 3.5: Map fine-grained power PDN layout to coarse meshing grids (a) vias (b) wires.

structure, as shown in the inset of Fig. 3.3). Prior work has proposed a virtual PDN mesh

design using C4 bump granularity with only one metal layer [70, 83, 81]. However, to

better reflect the nature of the interleaved PDN design as well as the impact of on-die vias,

we model the on-die PDN as a two-layer structure, as shown in Fig. 3.3. The resistance of

Rtop, Rbottom and Rvia can be extracted from the design layout using the process described

below.

For each layer within the on-die PDN, the metal wires and vias are typically uniformly

distributed[81]. If the actual layout is non-uniform, we can calculate the effective wire

pitch and via density and re-organize the PDN layout[81], as shown in Fig. 3.4.

Next, for each layer, we map the fine-granularity PDN layout to coarse mesh grids,

which are in C4 bump granularity. Fig. 3.5(a) and 3.5(b) illustrate the mapping proce-
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dure. For each coarse grid containing multiple vias and metal wires, the equivalent parallel

resistance is calculated and assigned using the models described in [81].

Finally, all coarse PDN layers with X-axis metal wires are mapped onto the top layer,

and all Y-axis metal wires are mapped onto the bottom layer, as shown in Fig. 3.3. Rvia

in Fig. 3.3 is the effective resistances of vias between adjacent metal layers. Likewise,

Rtop and Rbottom are the total parallel resistances between adjacent nodes in all layers with

X-axis and Y-axis wires, respectively.

3.1.4 PDN Analysis Formulation

The supply voltage noise formulation is shown as follows:

 G AL

−AL R

 ·

V (t)

I(t)

 +

C 0

0 L

 ·

V̇ (t)

İ(t)

 =

is(t)
0

 (3.1)

where G is the PDN grid conductance matrix; AL represent the coefficients of branch cur-

rent I(t) in Kirchhoff’s voltage and current equations, respectively. C and L are matrices

reflecting the capacitive and inductive elements, respectively; is(t) is the source current.

For steady-state analysis, the time-varying terms are omitted and the branch current

I(t) can be expressed in the form of V (t). Hence, all the branch currents other than the

source currents will be converted to a nodal voltage based representation. Thus, AL will be

merged with G in 3.1. Eq. 3.1 is then derived in the form of G ·V (t) = is(t), where matrix

G is positive symmetric definite. Therefore, the above linear equation can be solved using

the Choleskey factorization method.

For transient analysis, the trapezoid difference scheme can be used to formulate Eq.

3.1, as shown below:

(
K

∆t
+
U

2
) ·Xn+1 = (

K

∆t
− U

2
) ·Xn +

Is
n+1 + Is

n

2
(3.2)
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Table 3.1: Validation results (modeling vs. open source benchmarks)

Circuits (# of
Nodes)

Metal
Layers

Bump Current
Error (%)

Max IR-Drop
Error (%)

Transient Er-
ror (%VDD)

IBM1
(31 K)

2 21.75 20.29 1.84

IBM2
(127 K)

4 7.14 11.11 0.67

IBM3
(852 K)

5 3.59 2.21 0.54

IBM4
(954 K)

6 7.60 0.71 0.12

IBM5
(1.08 M)

3 6.12 3.03 0.22

IBM6
(1.67 M)

3 7.29 1.23 0.22

IBM7
(1.46 M)

6 5.34 5.71 N/A

IBM8
(1.46 M)

6 5.34 5.71 N/A

where

U =

 G AL

−AL R

 K =

C 0

0 L


X =

V
I

 Is =

is
0


(3.3)

To accelerate the simulations, we fix ∆t which would eventually make K
∆t

+ U
2

a constant

coefficient matrix. Therefore, we pre-factorize this matrix before transient simulations

using LU factorization. In the solving steps, the triangular factors can be used to solve the

linear equations efficiently. The framework is implemented using MATLAB because of the

necessity for dense matrix operations and scientific computations.

3.2 Validation

To validate the PDN framework, open-source IBM power grid benchmarks [98] are used.

The benchmarks are provided in the HSPICE netlist format. There are eight benchmarks
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Figure 3.6: The noise profile of IBM3 benchmark (a) results from open-source IBM PG
benchmarks and (b) our modeling results.

for steady-state analysis and six benchmarks for transient analysis. For steady-state results,

the benchmarks provide the overall noise profile including the noise level of each node. On

the other hand, for transient results, the benchmarks provide the waveforms of 20 randomly

selected nodes throughout the whole circuit. The benchmark size and the number of metal

layers are summarized in the first two columns of Table 3.1.

We use scripts to extract the layout and RLC information and then we map the PDN

layout onto the coarse mesh grids at the granularity of C4 bump pitch. Next, we solve for

the supply voltage noise in both steady-state and transient-state using the above mentioned

framework. We compare the modeling results to the IBM open-source data using three sets

of metrics: current of each C4 bump, IR-drop of each node, and transient noise of all the

20 randomly selected nodes.

3.2.1 Steady-State Results

The steady-state validation results are summarized in the third and fourth columns of Table

3.1. Except for the small benchmark cases IBM1 and IBM2, which have highly non-

uniform PDN structure, all cases obtain maximum relative errors of less than 7.60% and

5.71% in bump current and IR-drop, respectively. The noise profiles are also compared and

the results are well matched. Fig. 3.6 shows an example of the noise profile comparison of
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Figure 3.7: Bump current comparison for IBM3.

IBM3 as this case has the largest noise gradient. The model accurately captures the distri-

bution of the noise. Fig. 3.7 shows the bump current comparison of IBM3 in which we sort

the current of each bump in an ascending order and plot both IBM provided and our mod-

eling results [81]. Likewise, although the current value spans a wide scale (approximately

5X), the bump current is very well matched.

3.2.2 Transient-State Results

Transient validation results are summarized in the last column of Table 3.1. We normalize

the error to supply voltage because some of the benchmark noise values are small and thus,

the relative error can be high. Except for IBM1, the maximum error for all cases is less

than 0.67% VDD. Fig. 3.8 shows the node with the maximum error for IBM2. Even for

this case, the peak noise and waveform are well captured.

3.3 PDN Evaluation of Emerging Heterogeneous Integration Platforms

In this section, we use the above PDN framework to evaluate and compare different het-

erogeneous integration approaches, as shown in Fig. 3.9. The PDN design challenges for

2.5-D integration are investigated and summarized.
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Figure 3.8: The transient noise of the node with the maximum error for IBM2.
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Figure 3.9: Various heterogeneous integration platforms (a) interposer, (b) bridge-chip
within fan-out, (c) EMIB, and (d) HIST

3.3.1 2.5-D/3-D Integration Scenarios

Fig. 3.9 shows various heterogeneous integration technologies with different approaches

for chip-to-chip interconnections. The first approach utilizes silicon interposer technology.

In our study, we assume that the interposer contains front-side PDN routing that is inter-

connected to uniformly distributed fine-pitch microbumps [99]. Fine-pitch and bundled

TSVs in the interposer are used to connect the interposer-PDN to the landing pads of the
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Figure 3.10: Illustration of bridge-chip placement (a) a single large bridge-chip (b) five
small bridge-chips.

C4 bumps. By varying the number of TSVs, we can evaluate the best and worst interposer

scenarios.

The second approach, HIST [27], is based on placing ‘stitch’ chips above the package

substrate between the active dice to route high-density chip-to-chip interconnects. Another

approach is EMIB technology as described in [26], which utilizes embedded silicon chips

within the package to route the chip-to-chip interconnects. In imec’s bridge-chip concept

[6], a bottom die uses a bridge-chip and through silicon vias (TSVs) to communicate with

an upper die within a fan-out package. As shown in [5], for these bridge-chip based tech-

nologies, if no through vias are used, this limits the number of bumps that are connected

to the package-level power/ground planes especially at the edges. As a result, the PSN in

those regions is impacted. Under this assumption, our results show that the PDN modeling

of all these approaches as relatively comparable, and thus, we refer to these approaches

as ‘bridge-chip’ for the remainder of the chapter. From [5], multiple smaller bridge-chips

can reduce the PSN, and therefore, in this chapter, we assume a single large bridge-chip

configuration as the worst case and five smaller bridge-chips with the same aggregate area

as the optimal case, as shown in Fig. 3.10.

3.3.2 Design Parameters and Specifications

The modeling framework under consideration may be used to model any heterogeneously

integrated microsystem, including co-integrated processor-memory and processor-accelerator
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Figure 3.11: The current density of each die. (a) die #1 (b) die #2

modules. In this study, we emulate a field-programmable gate array (FPGA)-processor 2.5-

D integrated package. In the two-die package, Die #1 emulates a 14 nm FPGA die and is

assumed to have a peak total current of 49.78 A [100, 101]. The emulated FPGA power

map is based on Intel Stratix 10 FPGA [102]. Die #2 emulates a 22 nm processor with a

peak total current of 82.77 A. The current density maps are shown in Fig. 3.11. The supply

voltage is assumed to be 0.9 V [101, 69].

Both dice are assumed to be 1 cm × 1 cm, and the package is assumed to be 2.45 cm

× 1.8 cm. The two dice are placed side-by-side with a die spacing of 0.5 mm. The bridge-

chip has a total area of 1.5 mm × 6 mm and the total overlap area with each die is assumed

to be 0.5 mm × 6 mm (I/O area), as shown in the shaded region of Fig. 3.10. Table. 3.2

summarizes the parameters used in the PDN simulations. Since the FPGA and processor

dice may have different supply voltages, they are assumed to have separate power delivery

domains in each package layer and the PDN area in the package is equally assigned for

simplification.

Moreover, as a reference to the best achievable results for bridge-chip and interposer

cases, we consider an ideal baseline case where the two dice are assumed to be bonded

to the package without an interposer or bridge-chips. This baseline is referred to as ‘stan-

dalone’ case. For all cases, we assume the packages are the same and utilize a C4 bump

pitch of 200 µm. For the interposer case, the microbump pitch is 40 µm. Moreover, we
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Table 3.2: Parameters of the PDN model

Parameter value
On-die metal resistivity (Ω ·m) 1.8e-8

On-die global wire Pitch/Width/Thickness (µm) 39.5/17.5/7
On-die intermediate wire P/W/T (nm) 560/280/506

On-die local wire P/W/T (nm) 160/80/144
on-die decap density (nF/mm2) 335

microbump pitch/R/L (µm/mΩ/pH) 40/30.9/11.1
C4 bump pitch/R/L (µm/mΩ/pH) 200/14.3/11.0

Package effective decap R/L/C ((mΩ/pH/µF) 541.5/220.7/52
Package resistivity/inductance (mΩ/mm/pH/mm) 1.2/24

BGA pitch/R/L (µm/mΩ/pH) 500/38/46
TSV R/L (mΩ/pH) 54.2/77.78
PCB R/L (µΩ/pH) 166/21

PCB Decap R/L/C ((µΩ/nH/µF) 166/19.54/240

assume the interposer worst case scenario to be when only one TSV is used per C4 bump

while the best case scenario to be when 25 TSVs are used per C4 bump.

3.3.3 Benchmarking

IR-Drop

IR-drop profiles of each case are shown in Fig. 3.12. For the interposer case, even with

additional fine-pitch P/G grids in the interposer, whether the PSN is improved relative to

the standalone case depends on how many TSVs are used. This is because while the fine-

pitch P/G grid and microbumps cause the current to spread more uniformly, the addition of

TSVs may effectively increase the total PDN impedance. With only one TSV per C4 bump,

the interposer case has a 6.27% and 7.79% larger IR-drop compared to the standalone

case for Die #1 and Die #2, respectively. However, with 25 TSVs per C4 bump, the IR-

drop is approximate 3.42% (Die #1) and 4.44% (Die #2) smaller than the standalone case.

Moreover, the IR-drop distribution is more uniform than the case with only one TSV per

C4 case. Nevertheless, interposer with fine-pitch TSVs will have higher fabrication costs,

signal integrity challenges for high speed ICs and mechanical reliability challenges [26],
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Figure 3.12: The IR-drop profiles of both dice for (a) standalone, (b) interposer case with
one TSV per C4 bump, (c) interposer case with 25 TSVs per C4 bump, (d) single bridge-
chip, and (e) five bridge-chips.

which make bundled-TSVs per C4 bump potentially difficult to use in practice.

For the bridge-chip cases, compared to the standalone and interposer cases, the addi-

tional noise is mainly due to the absence of C4 bumps in the regions overlapping with the

bridge-chips. The IR-drop is approximately 53.2% (Die #1) and 5.8% (Die #2) larger than

the standalone case. When five bridge chips are used as shown in Fig 3.12(e), there are

no PSN hotspots at the edges of Die #2, and the maximum IR-drop of the system is the

same as the standalone case. Similar to the interposer case with dense TSVs, there is also

a larger manufacturing complexity to using multiple bridge-chips instead of a single large

bridge-chip due to the requirement for multiple high-accuracy alignment assembly steps.

When comparing the interposer and bridge-chip technologies from a PDN perspective,

it is hard to come up with a fair criterion since both are affected by multiple parameters.

For the interposer case, besides the parasitics of the TSVs, the microbump pitch also plays
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Figure 3.13: IR-drop comparison of interposer and bridge-chip technologies as a function
of key parameters for each case

an important role, and for the bridge-chip case, the width of the overlap area is the critical

factor. Therefore, we plot the maximum IR-drop of the system as a function of the above

variables using the same Y-axis, as shown in Fig. 3.13. We sweep the microbump pitch of

interposer from 40 µm to 200 µm; on the other hand for the bridge-chip case, we sweep

the overlap area from 0.5 mm × 6 mm to 2 mm × 6 mm (width of overlap area changes

from 0.5 mm to 2 mm).

For the interposer case, with a larger microbump pitch, the IR-drop gradually increases.

This is because the additional microbump and TSV resistances will offset the spreading

effects of the interposer PDN. When the microbump pitch is increased from 40 µm to

200 µm, there is an 11.7% and a 4.38% IR-drop increase for the one TSV per C4 bump case

and the 25 TSVs per C4 bump case, respectively. This indicates: first, without fine-pitch

microbumps, there are not many benefits to using interposer, and second, using bundled-

TSVs, even when the microbump pitch is limited, the IR-drop will reduce.

For the bridge-chip case, as the overlap area increases, the IR-drop inevitably increases

since the center of the overlap area becomes further away from the nearest C4 bumps.

However, with multiple bridge-chips, the IR-drop is less sensitive to the overlap area than
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Figure 3.14: (a) Impedance analysis of a single on-die PDN node and illustration of the
switching current activity (a) waveform #1 1 GHz frequency (c) waveform #2, 4 GHz
frequency

the single bridge-chip case and it incurs an IR-drop increase of 12.5% while for single

bridge-chip case, the IR-drop almost doubles when the overlap region is 2 mm wide instead

of 0.5 mm.

In summary, there are challenges and opportunities for both interposer and bridge-chip

technologies from an IR-drop and manufacturing perspectives. For interposer technology,

the key parameters are fine-pitch microbumps and high density TSVs, while for the bridge-

chip based technologies, the key parameters are overlap area, single versus multiple smaller

bridge-chips, and the location of power hotspots.

Transient Droop

For transient analysis, the supply noise results from the switching current. Fig. 3.14(a)

shows the impedance analysis results of an on-die node. The chip operating frequency (>

1 GHz) is higher than the resonant frequency (about 150 MHz), therefore we only consider

two waveforms with different frequencies (1 GHz and 4 GHz). The two waveforms are il-

lustrated in Fig. 3.14(b) and 3.14(c). Waveform #1 has a rise time, pulse time, fall time and

period of 400 ps, 200 ps, 400 ps, and 1000 ps, respectively and waveform #2 if four-times

the frequency of waveform #1, as shown in Fig. 3.14(c). Since we already benchmarked
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Table 3.3: Transient state analysis results

Unit: mV Waveform #1 Waveform #2
Die #1 Die #2 Die #1 Die #2

Single-die 103.19 160.46 91.95 146.03
Interposer 99.93 155.37 91.61 143.06

Bridge-chip 109.44 160.46 97.50 146.06

interposer and bridge-chip cases with different technology parameters, for simplification

of transient droop analysis, we only investigate an interposer with 25 TSVs per C4 bump

and a bridge-chip based 2.5-D heterogeneous integration using five bridge-chips between

the dice with an overlap to be 0.5 mm × 6 mm.

The results are summarized in Table. 3.3. The droop curves of the worst node for

both waveforms are shown in Fig. 3.27. The frequency of waveform #1 (1 GHz) is much

closer to the resonant frequency (approximately 125 MHz from Fig. 3.14(a)) than that of

waveform #2 (4 GHz), therefore, waveform #1 produces much larger on-die noise swing

and relatively larger first droop. Therefore, in the following analysis, we focus on the

results of waveform #1. Compared to the standalone case, the interposer achieves a PSN

reduction of approximately 3.16% and 3.17% for Die #1 and Die #2, respectively. For

the bridge-chip case, there is only a 6.04% increase in Die #1 and a minimal increase in

Die #2 (which can also be seen by the lack of noise hotspots in the peripherals of Die #2).

Another observation is that the difference between the evaluated cases is not as significant

as was in the IR-drop analysis since the switching noise principally results from inductive

parasitics of the package. Note, all PSN results in this chapter are strongly dependent on

the power-maps assumed; for example, if a bridge-chip is within the footprint of a large

power density region, PSN will be impacted more severely.

3.4 Impact of PDN in the Bridge-Chip

Thus far, we assumed that the bridge-chip in a 2.5-D configuration is used for die-to-die

signaling; bridge-chip does not have any PDN. Recent studies show that a bridge-chip can

contain multi-layer PDN [103]. In this section, we investigate the impact of adding PDN in
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Figure 3.15: Transient analysis results of the point with largest droop (a) waveform #1 (b)
waveform #2

the bridge-chip. We perform various case studies for two different bridge-chip based 2.5-D

configurations: CPU-FPGA integration and stacked memory-FPGA integration.

3.4.1 PDN Schematics with Bridge-Chip PDN

Fig. 3.16(a) and 3.16(b) show the schematic diagram for two different scenarios under

consideration. Prior sections consider the scenario described in Fig. 3.16(a). Similar to

the previous studies, owing to the overlap region between the dice and the bridge-chip,

the package PDN still does not have direct access to the peripheral circuits on the die.

In this section, we make a few assumptions. First, we assume that the microbumps are

part of the PDN as well; some microbumps are interconnecting the on-die PDN to the

bridge-PDN. Second, we assume that the peripheral circuits of different dice might share

the same voltage domain. Finally, we assume that the bridge-chip metal-stack is multi-

layer to accommodate PDN as well as the signaling network. Specifically, we investigate

three scenarios.

• Inclusion of the VSS (ground) network in the bridge-chip: Our assumption of sharing

the voltage domain across different dice might not hold for all cases. However, two

dice can always share a ground. Fig. 3.17(a) presents this scenario.
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Figure 3.16: PDN schematic diagram (a) excluding bridge-chip PDN and (b) including
bridge-chip PDN

(a)
g p

(b)
g p

(c)

Figure 3.17: (a) Ground net in the bridge-chip, (b) power and ground nets in the bridge-
chip, and (c) metal-insulator-metal capacitors in the bridge-chip
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Figure 3.18: (a) CPU-FPGA configuration with re-routed PDN for the peripheral circuits,
(b) die-to-package bump map with no PDN in the bridge, and (c) die-to-package bump map
with ground net in the bridge-chip

• Inclusion of the power and ground network in the bridge chip: Fig. 3.17(b) illustrates

this concept.

• Inclusion of metal-insulator-metal decoupling capacitors in the bridge-chip: In the

event where we have both power and ground available on the bridge-chip, it might be

possible to embed metal-insulator-metal (MIM) decoupling capacitors in the bridge-

chip. Fig. 3.17(c) presents this scenario.

3.4.2 Bridge-Chip PDN Analysis for 2.5-D of CPU-FPGA Integration

Similar to prior studies in this chapter, we consider a bridge-chip based 2.5-D integration

of a CPU die and an FPGA die, as shown in Fig. 3.18(a). The figure also shows how the

current has to re-route through the nearest package-to-die bumps to deliver power to the
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Figure 3.19: DC IR-drop results for (a) no PDN in the bridge-chip, (b) ground network in
the bridge-chip, and (c) both power and ground network in the bridge-chip

peripheral circuitry. Fig. 3.18(b) shows the package-to-die bump patterns for ‘no bridge-

chip PDN’ case. The microbumps in the overlap region are cut-off from the PDN. Fig.

3.18(c) shows the bump pattern with the inclusion of the ground network in the bridge-

chip. Including both power and ground network will have a bump pattern similar to this.

Power and ground network in the bridge-chip

Fig. 3.19 summarizes the steady-state IR-drop results for the bridge-chip based configura-

tion under consideration. With no bridge-chip PDN, the CPU die and the FPGA die have

99 mV and 86 mV IR-drop, respectively. If we include the ground network in the bridge-

chip, as shown in Fig. 3.19(b), there is an 8% and a 10% reduction in IR-drop for the CPU

die and the FPGA die, respectively. This reduction is further enhanced by the inclusion

of both power and ground network in the bridge-chip. Fig. 3.19(c) presents this result.

Compared to the ‘no bridge-chip PDN’ case, this case improves the IR-drop by 17% for

the CPU die and 23% for the FPGA die. The on-die PDN is more resistive than the package
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Figure 3.20: Impact of bridge-chip PDN resistance on DC IR drop

PDN. However, the PDN in the bridge-chip acts as a parallel resistance to the on-die PDN

path for the peripheral circuits. Hence, we observe the reduction in the IR-drop for each

die. We also analyzed the impact of bridge-chip PDN resistance on the performance of a

CPU-FPGA system. Fig. 3.20 shows the results for this analysis. For our baseline case,

we calculate the PDN resistance in the bridge under the assumption of two and ground

networks in the bridge-chip. In the figure, this shows the case where we have a multiplier

of 20. A multiplier of 1 means the resistance equivalent to the resistance of the package

PDN. We observe that regardless of the resistance of the PDN in the bridge-chip, this will

always improve the PSN.

We also investigate the Ldi
dt

based transient analysis results for this configuration. We

use a 1 GHz on-die stimulus for this study (Fig. 3.21). For the CPU die and the FPGA

die, we observe a 5% and 9% decrease in the first droop noise, respectively. The bridge-

chip PDN reduces the resistance of the on-die network. However, the transient first droop

noise depends on the package inductance and the on-die decoupling capacitors. Inclusion

of the bridge-chip PDN does not impact any of these two factors. Hence, we observe lesser

impact on transient noise as we observed in the steady-state IR-drop analysis. Moreover,
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Figure 3.21: Transient analysis results for a 1 GHz pulse on-die excitation for (a) CPU
die excluding bridge-chip PDN, (b) CPU die including bridge-chip PDN, (c) FPGA die
excluding bridge-chip PDN, and (d) FPGA die including bridge-chip PDN
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Figure 3.22: Transient analysis results including metal-insulator-metal capacitors in the
bridge-chip for (a) CPU die and (b) FPGA die

since the resistance is lesser with the inclusion of the bridge-chip PDN, there is a slight

increase in high-frequency ripple across the noise profile.

Decoupling capacitor in the bridge-chip

On-die decoupling capacitors reduces the first droop noise. However, owing to the limited

on-die space, the number of on-die decoupling capacitors that can be added is very limited.

If both power and ground networks are available in the bridge-chip, then MIM capacitors

can potentially be embedded within the bridge-chip metal layers. In this study, we use a

decoupling capacitor density of 5 nF/mm2 in the bridge-chip. Fig. 3.22 shows the results

for this scenario. For the FPGA die, the first droop noise reduces by 19% compared to

the ‘no bridge-chip PDN’ case. For the CPU die, this reduction is 12%. Compared to the

‘no bridge-chip capacitor’ case, this is an 11.4% and a 7.6% improvement for the FPGA

die and the CPU die, respectively. We observe a significant reduction in high frequency

ripple in the supply voltage. For both dice, this high frequency ripple is reduced by greater

than 3x compared to the results shown in Fig. 3.21. MIM capacitor density depends on its

structure, dielectric material, etc. Hence, we also vary the decoupling capacitor density in
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Figure 3.23: Impact of MIM capacitor density on (a) PSN and (b) high frequency ripple

the bridge-chip from 0 nF/mm2 to 10 nF/mm2. Fig. 3.24 summarizes these results. While

adding decoupling capacitor helps reduce the PSN for both chips, beyond 5 nF/mm2, we

observe a diminishing return for the CPU die. From the high frequency ripple perspective,

we observe that for the CPU die, beyond 5 nF/mm2, the high frequency ripple increases.

This can be attributed to the shift in the high PDN noise region for the CPU die. As shown

in Fig. 3.24, with no or little decoupling capacitor in the bridge-chip, the PDN ’shadow’

region in both of the dice persists. However, beyond 5 nF/mm2, the shadow region in

the CPU die is non-existent. The maximum PDN noise spot moves away from the edge of

the die where the PSN profile looks similar to that of the multi-chip module configuration

discussed in this chapter. Since we only report the maximum noise for all decoupling

capacitor densities, we observe a sharp shift in the high frequency ripple in the CPU die.

However, for the FPGA die and in the overlap region for the CPU die, additional decoupling

capacitors still help reduce the PSN. We do not see a similar trend in the FPGA die owing

to the assumed power map with higher power regions in the edge of the die. If our bridge-

chip structure allows us to have a higher capacitor density or the power map changes to

put lower power blocks in bridge-chip overlap region of the die, we might observe a trend

similar to the CPU die under consideration.
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Figure 3.24: Impact of MIM capacitor density on maximum noise location for (a) no MIM
capacitors and (b) 10 nF/mm2 MIM capacitor density

3.4.3 PDN Analysis for a 2.5-D Integration of Stacked Memory-FPGA Configuration
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Figure 3.25: HBM-FPGA configuration with bridge-chip

Fig. 3.25 shows a bridge-chip based 2.5-D configuration with stacked memory and

an FPGA die. From prior analysis in this chapter, we observe that the increased overlap

region between a bridge-chip and a die leads to increased supply noise. For a stacked

memory based configuration, the memory banks are centrally interconnected to the pack-

age using TSVs. The base logic die has an area array distribution of the package-to-die

bumps. However, even for the base logic die, we assume that the bumps in the bridge-chip

overlap region provide mechanical support; they are not electrically connected. Owing to

the centrally distributed memory PDN, the bridge-chip extends farther towards the memory

die than the FPGA die. In this study, we investigate the impact of this overlap region on
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Figure 3.26: (a) FPGA-stacked memory power specifications and power map for memory
(b) core die 0, (c) core die 1, (d) core die 2, (e) core die 3

Fig. 3.26 shows the power specifications of different dice under consideration. For the

FPGA die, we use the same specifications as the prior studies in this chapter. For the stacked

memory, we assume that the base logic die consumes 5 W. Moreover, we assume that the

memory die has four core dice. Each core die has two channels and four pseudo-channels

[104]. Each pseudo-channel has eight memory banks on each side of the central I/Os. Fig.

3.27(a) and 3.27(b) summarizes the steady-state IR-drop results for the base logic die and

the FPGA die with and without bridge-chip PDN, respectively. Owing to the larger overlap

region towards the memory die, the base logic die has highly resistive PDN path to the
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Figure 3.27: DC IR-drop results for the FPGA and memory dice (a) excluding PDN in the
bridge-chip and (b) including PDN in the bridge-chip

peripheral circuits. With the inclusion of the bridge-chip PDN, the IR-drop in the FPGA

die and the base logic die reduces by ∼38% and ∼50%, respectively. However, for the

memory core dice, the IR-drop is almost invariant to this overlap region. Fig. 3.28 presents

these results. This non-sensitivity to the bridge-chip PDN can be attributed to the centrally

distributed TSVs for power supply. If the bridge-chip extends more toward the memory

dice so that it overlaps with the memory I/O region, we would see the impact of bridge-chip

overlap on memory bank power delivery as well. However, owing to this configuration, the

die-to-die signaling channels between an FPGA die and the memory banks are longer.

This will impact the signaling network of this configuration. To investigate the impact of

the bridge-chip overlap on the PSN of a die similar to the base die in this configuration, we

evaluate a two die system where the Die-1 is the aforementioned FPGA die and the Die-2 is

a chip with variable power consumption. We varied the power of the Die-2 from 5 W to 100

W with the same overlap region. Fig. 3.29 presents the results of this analysis. We observe
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Figure 3.28: DC IR-drop results for different memory dice in the stacked memory; (a) core
die 0, (b) core die 1, (c) core die 2, and (d) core die 3

that for different power values, there is a significant benefit in using PDN in the bridge-

chip. For example, for the 100 W case, we observe a 42% VDD PSN for a configurations

which excludes PDN in the bridge-chip. Including the bridge-chip PDN, this PSN is 17%

VDD (i.e. 2.5x reduction). Hence, bridge-chip PDN can be vital depending on applications

and power consumption of dice.

3.5 Design Space Exploration of Power Delivery Including Voltage Regulator Mod-

ules

In this section, based on prior PDN modeling efforts [5, 58, 105], different voltage regulator

module (VRM) placement methodologies e.g., on-package, 3-D stacked VRM-chip, VRM

placed on the backside of the package, etc. are explored.
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Figure 3.29: Impact of bridge-chip overlap for a die with varying power

3.5.1 Benchmark Architectures

Several benchmark configurations have been analyzed in this chapter. A brief description

of each of the configurations is given below.

• Side-by-side VRM-chip configuration: In Fig. 3.30(a), the VRM chip is placed

next to the active chip on the same package and thus, the long interconnect distance

from the power supply to the chip is reduced. This, in effect, is expected to reduce

the overall IR-drop compared to the case with the off-chip VRMs placed in the moth-

erboard.

• Backside-of-the-package VRM technology: The configuration shown in Fig. 3.30(b)

considers a VRM chip placed on the backside of the package. In such an approach,

the parasitics of the board PDN and the package PDN are mostly eliminated from the

noise calculation.

• 3-D-IC Chip-on-VRM topology: Fig. 3.30(c) shows the 3-D IC stacking of a pro-

cessor chip on top of the VRM chip. The parasitics in the path of power supply

consist of only TSVs and bumps. In effect, the PSN is expected to decrease further.
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Figure 3.30: Benchmark architectures

3.5.2 PDN Topology and Specifications

Figure 3.31: The non-uniform current density map used for the analysis
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Table 3.4: PDN parameters

TSV pitch 100 µm
TSV resistivity [106] 80×10−9 Ωm
TSV contact resistance [107] 0.45 Ωµm2

Package wire thickness (metal
planes)

10 P/G metal layers, 0.010 mm per layer (5
for Power and 5 for Ground)

Package wire resistivity [108] 180×10−9 Ωm
On-chip PDN wire dimensions 5 um thick, 3.3 um wide, 30 um pitch
On-chip PDN wire resistivity 17.1×10−9 Ωm
On-chip decap 5.3 nF/mm2

C4 bump diameter 40 µm
C4 bumb pitch 100 µm
C4 bump material Solder (alloy; 100×10−9 Ωm)

The overall analysis flow is as described in the prior work [109, 7]. Throughout this

chapter, a 1 cm × 1 cm chip is considered. The active chip is assumed to have a 1 V sup-

ply voltage rail and a total power of 100 W. VRM parasitic resistance and inductance are

extracted from the literature [108, 110]. The simulation specifications of different param-

eters are described in Table 3.4. The package level decoupling capacitors are discrete and

have capacitance (C esc pkg), resistance (C esr pkg), and inductance (C esl pkg) associ-

ated with them. Non-uniform current density map with distinct high-power blocks is used

for the simulations. The power map (or current density map) is specified in Fig. 5.4(a)

which is taken from [88], but is modified according to [111, 76].

3.5.3 DC IR-Drop Comparison of Different Benchmark Configurations

In this section, the DC IR-drop for different configurations i.e., on-package VRM, 3-D IC

chip-on-VRM, and the backside-of-the-package VRM, etc., has been analyzed. In each

configuration, adding additional VRMs to the system reduces DC IR-drop. The impact of

multiple VRMs on PSN suppression is more pronounced if there are hotspots in the chip.

Fig. 3.32 shows one such example. Fig. 3.32(a) and 3.32(b) show the relative positions

68



VRM 

VRM 

V
R

M
 V

R
M

 

Processor VRM Processor 

(a)

VRM 

VRM 
V

R
M

 V
R

M
 

Processor VRM Processor 

(b)

Max IR Drop = 53.2 mV 

Max IR Drop = 47 mV Max IR Drop = 20.8 mV 

Max IR Drop = 20.3 mV 

(c)

Max IR Drop = 53.2 mV 

Max IR Drop = 47 mV Max IR Drop = 20.8 mV 

Max IR Drop = 20.3 mV 

(d)

Max IR Drop = 53.2 mV 

Max IR Drop = 47 mV Max IR Drop = 20.8 mV 

Max IR Drop = 20.3 mV 

(e)

Max IR Drop = 53.2 mV 

Max IR Drop = 47 mV Max IR Drop = 20.8 mV 

Max IR Drop = 20.3 mV 

(f)

Figure 3.32: a) Single on-package VRM configuration, b) four on-package VRM config-
uration; DC IR-drop for c) single on-package VRM case, d) four on-package VRMs case
with uniform current density map; e) single on-package VRM case, and f) four on-package
VRMs case with non-uniform current density map

of the VRMs with respect to the active chip. With the single VRM placed farther from the

high current density region, there is a significant increase in the IR-drop, as shown in Fig.

3.32(c) and 3.32(e). On the other hand, multiple VRMs suppress the hotspot issues as the

effective distance between the high power load and the voltage regulator is less than that

with the prior case. Fig. 3.32(d) and 3.32(f) show the IR-drop suppression effect using four

on-package VRMs. The maximum IR-drop is reduced by 60.9% using four on-package
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Figure 3.33: Comparison of DC IR-drop for different configurations

VRMs instead of one. The IR-drop for single on-package VRM case with a non-uniform

current density map is 13.2% larger than the case with a uniform current map. However,

for a similar condition, the four on-package VRMs case has a 2.4% increase in the IR-drop.

Fig. 3.33 summerizes the results for different VRM-processor configurations. All re-

sults are obtained using the non-uniform current density map specified in Fig. 5.4(a). In

the backside-of-the-package VRM and 3-D IC chip-on-VRM cases, owing to the shorter

distance, the IR-drop is smaller compared to the prior on-package VRM cases. In the

backside-of-the-package configuration, the through package vias and metal layers in the

package PDN are important components of the power delivery path. In the 3-D IC case,

however, due to the dense bumps between the chips, the TSVs in the VRM chip and the mi-

crobumps between the VRM and the active chip are the only contributors of the parasitics

in the PDN path. As a result, the IR-drop for the 3-D IC case is 24% and 15.9% smaller

than that of four on-package VRMs and backside of the package VRM cases, respectively.

Since the multiple on-package VRMs case brings the regulator circuits closer to the

active chip, there are different trade-off analyses which determine how close we can bring

these chips. Fig. 3.34 shows the DC IR-drop results for three different distances between
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Figure 3.34: Comparison of maximum IR-drop for different VRM-chip gaps in the on-
package VRM configurations

In the baseline model, the distance between the VRM and the processor chip was fixed

to 1 mm. Increasing the distance is beneficial for reducing thermal coupling between two

chips of different power density [15]. However, it increases the signaling and power deliv-

ery path lengths [112]. To investigate the impact of this on power delivery performance,

the distance was varied from 3 mm to 0.1 mm. Fig. 3.34 summarizes the results for 3 mm,

1 mm and 0.1 mm distances. As expected, if the distance is increased, the interconnect

length for power supply increases, which eventually increases the IR-drop. Convention-

ally, decoupling capacitors (decaps) are placed in these regions. Reducing this inter-chip

distance would result in lesser decaps in the vicinity of switching. This is another trade-

off that has to be considered. Generally, PSN suppression is more important and hence, a

greater emphasis is placed on a lesser inter-chip distance.

In this study, bump pitch is held at 100 µm for the 3-D IC chip-on-VRM case. In this

section, the impact of bump pitch scaling is investigated. The bump pitch is scaled from

100 µm to 500 µm. For each of the configurations, as the bump pitch increases, bump

diameter is increased with the same factor. We use a bundled TSV approach and hence,
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Figure 3.35: Comparison of IR-drop for different bump pitches in the 3-D IC chip-on-VRM
configuration

the number of TSVs under each bump is also increased in quadratic progression. With

the increased pitch, the overall number of bumps will decrease. Therefore, each bump

will carry more current. If the number of TSVs is not increased in quadratic progression,

then the current density in each TSV will increase, leading to increased joule heating [113]

and potentially reducing the meantime to failure (MTTF)[114]. Fig. 5.6 summarizes the

results. Only the 3-D IC case has been considered here for the analysis as we believe other

cases will follow the same trend. For larger bump pitches, since the total number of TSVs

is the same for all cases, and the bump resistance is decreased with increased diameter, the

on-die loss is the only differentiating factor.

3.5.4 Comparison of Transient Noise for different configurations

In this section, we investigate the transient analysis results for the VRM-processor config-

urations under consideration. Owing to the area constraints, the amount of on-chip decap

is very limited [115]. However, we can control the second and third droop since these are

controlled by the integrated and mounted decaps in the package and the board. In all the

transient simulations, the on-chip decap is fixed to the specified value as noted in Table
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3.4. The controlling parameters are the discrete decaps on the board and the package. In

each case, a small number of decaps is considered. Since this chapter is about the impact of

different benchmark architectures on DC IR-drop and simultaneous switching noise (SSN),

a detailed analysis of decap allocation for optimized result is out of scope. In this section,

for different configurations, step response of the system will be shown. The supply voltage

rises from 0 V to 1 V with a rise time of 1 ns.

Fig. 3.36 shows the transient noise profile for multiple on-package VRMs. As expected,

with increased number of VRMs surrounding the chip, there is less PSN. In all cases, the

transient noises generated from the interaction of capacitive and inductive (mainly package)

elements oscillate and settle down to the DC IR-drop value of the corresponding case. The

second droop is suppressed by the discrete decaps placed on the package. Also, the parasitic

inductance from VRMs is somewhat suppressed by the low pass filter integrated with the

regulator circuit. That is why the most dominant transient droop in all the cases is the first

droop noise. The four on-package VRMs case achieves almost 24.45% improvement in

PSN compared to the single on-package VRM case.
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Figure 3.36: Comparison of transient noise for different on-package VRM configurations

When the VRM chip is placed on the backside of the package, VRM-to-chip PDN is
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mostly dominated by package vias and bumps. Package vias typically have low aspect ratio

compared to TSVs, so they contribute less to the resistance and more to the inductance of

the system. Solder bumps between the package and the board play a similar role compared

to the microbumps. Also, the number of microbumps is higher than the number of solder

bumps. In the 3-D IC chip-on-VRM case, the VRM is directly supplying power from the

bottom of the chip. Hence, the inductive components are the TSVs in the VRM chip and

the microbumps between the VRM and the active chip. These are minimal compared to

the inductive components in the other cases described in this study. In both cases, the

package is less involved, which reduces the overall package parasitics in the PDN. Fig.

3.37 compares the best case from the on-package VRM cases with the backside-of-the-

package and 3-D IC chip-on-VRM configurations. For the backside-of-the-package VRM

case, the maximum PSN is 82.64 mV. This itself is 10.65% improvement compared to the

four on-package VRMs case. The 3-D IC chip-on-VRM case provides a maximum PSN of

58.8 mV.
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Figure 3.37: PSN comparison for different key benchmarks

Throughout the chapter, it’s been obeserved that the transient noise is dominated by the
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Figure 3.38: Maximum PSN of some key configurations for different on-chip decap density

first droop noise. This noise is dependent on the on-chip decap allocation. Throughout

this chapter, a decap density of 5.3 nF/mm2 has been used for the analysis. Typically,

on-die decap can take 20-30% area depending on the available space [115]. Moreover,

depending on the type of capacitors used, the decap density can vary [116]. Typically using

MOS capacitors, a decap density of 10-20 nF/mm2 can be achieved. The four on-package

VRMs case, the 3-D IC chip-on-VRM case, and the backside-of-the-package VRM case

have been simulated for a varying decap density. The density is varied from 1 nF/mm2 to

15 nF/mm2. To simplify the analysis, uniform power density has been considered. Fig.

3.38 summarizes the results from this study. As expected, with increased decap allocation,

the PSN decreases. For the 3-D IC case, the maximum PSN reduced from 64 mV for

1 nf/mm2 to 36 mV for 15 nF/mm2. The other two cases follow the same trend as well. So,

if the available space after floorplanning can be utilized for decap allocation, then using

higher decap density enabled by MOS capacitors or metal-insulator-metal capacitors will

suppress the PSN further along with the different configurations mentioned in this chapter.
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Table 3.5: Thermal simulation parameters

Layer Conductivity (W/mK) Thickness (µm)
In-plane Through-plane

TIM 2 3 30
Heat spreader 400 1000

TIM 1 3 30
Processor 149 100

VRM 149 100
Microbump and ILD [117] 1.6 40

Package 30.4 0.38 1000

3.5.5 Thermal Implications of Different Architectures

The different configurations studied in this chapter span from 2.5-D to 3-D integration.

Depending on the type of circuitry and inductor placement, voltage regulators typically

have 70-90% efficiency [35, 34, 72]. Hence, the VRMs are typically low power active chips

which contributes to the overall temperature distribution of a given configuration. In this

section, steady-state thermal analysis of different configurations is carried out in ANSYS.

The parameter specifications used for thermal simulations are given in Table 6.1. There are

two thermal interface material (TIM) layers in the system (i.e. one in each side of the heat

spreader). The system is considered air-cooled, and the case-to-ambient thermal resistance

is assumed to be 0.218 K/W along with an effective convective coefficient in the backside

Table 3.6: Thermal results

Configuration Processor temperature
(oC)

VRM temperature (oC)

1 On-package VRM 56.5 ˜ 78 33 ˜ 58.6
2 On-package VRM 55 ˜ 74.6 42 ˜ 56.6
4 On-package VRM 54.2 ˜ 74.1 44.5 ˜ 55.7
Backside-of-the-
package VRM

55.8 ˜ 75.2 91 ˜ 117

3-D IC Chip-on-VRM 57.4 ˜ 78.2 54.1 ˜ 78.3
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of the package [90]. There is a microbump layer between the VRM and the processor in

the 3-D IC case. The package-to-chip connection is established by C4 bumps and underfill

material. For both the bump layers, same thermal conductivity is used as specified in the

table. The ambient temperature is assumed to be 22oC. The processor power is 100 W.

As a starter, assuming 91% efficient regulators, the VRM power is estimated as 10 W.

The thermal results are summarized in Table 3.6. The configuration with four on-package

VRMs has the minimum temperature both in the chip and the VRMs. In the backside-of-

the-package VRM case, because of the lower thermal conductivity of the package material,

the VRM at an elevated temperature compared to the other cases. Since the VRM power is

low relative to the processor chip power, 3-D stacking causes only a minor increase in chip

temperature. This configuration minimizes power supply noise, while still being thermally

feasible. However, the VRM chip itself is at an increased temperature, e.g. the VRM chip

is 31% higher temperature compared to the 4 on-package VRMs case. Because of the thin

layer of bumps between the processor and the VRM, these chips have similar temperature

distribution. Moreover, it’s observed that the lower power chip helps in heat spreading off

the higher power chip.

We use 91% efficient regulators for simulations, which are towards the high-end regu-

lators reported in the literature. As specified before, the overall efficiency can vary, which

eventually means a higher power VRM die. In this analysis, VRMs with different power

densities are simulated. The results are summarized in Fig. 3.39. The top and bottom fig-

ures report the maximum temperature of the VRMs and the processor for different VRM

power densities, respectively. As the regulator efficiency decreases, the on-package VRM

configurations and the backside-of-the-package VRM are almost invariant to the increased

power density in the VRM die. However, the 3-D IC case is a bit more sensitive to this

variation. For a 15 W/cm2 change (10 W/cm2 to 25 W/cm2) in the VRM power density,

there is approximately 10% increase in the maximum temperature of the dice. From this

analysis, we can conclude that, with higher efficiency VRMs, the 3-D IC case is a feasible
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Figure 3.39: Processor and VRM maximum temperature for different configurations with
respect to different VRM power density

option. The best performing option of all the configurations regardless of the VRM effi-

ciency is the side-by-side on-package VRM configurations. With a more advanced package

cooling technique, the backside-of-the package VRM case can be a viable solution as well.

3.5.6 Power Delivery Capabilities of Different Architectures

In the preceding sections, a power delivery analysis is performed with the assumption of an

overall 100 W/cm2 power density in the active chip. However, in a real design, there is a

limit up to which designers will allow the supply voltage to fluctuate. This supply voltage

tolerance is typically 5% of the supply voltage [108]. Since 1 V supply has been considered

in this analysis, a ±50 mV is used as the threshold. In this section, the processor power

for all the configurations is swept to observe the power delivery capability of different

architectures.

78



104

82

47 52 59

210

150

94
102

117

0

50

100

150

200

 

Po
w

er
 D

el
iv

er
y 

C
ap

ab
ili

ty
 (W

/c
m

2 )

 5% VDD
 10% VDD

4 on-package VRM

2 on-package VRM

1 on-package VRM

Backside-of-th
e-package VRM

3D IC Chip-on-VRM

(a)

85

66

41
49

56

172

130

83
97

110

0

50

100

150

Po
w

er
 D

el
iv

er
y 

C
ap

ab
ili

ty
 (W

/c
m

2 )

 

 5% VDD
 10% VDD

4 on-package VRM

2 on-package VRM

1 on-package VRM

Backside-of-th
e-package VRM

3D IC Chip-on-VRM

(b)

Figure 3.40: Power delivery limit of different configurations for (a) uniform and (b) non-
uniform current density map

Fig. 3.40(a) summarizes the results from the simulations with a uniform current density

map in the chip. The four on-package VRMs case is capable of achieving a power density

of 60 W/cm2 without reaching the 50 mV limit. But in the 3-D IC chip-on-VRM case, the

power delivery capability is more than 100 W/cm2. Fig 3.40(a) also shows the power limits

of different configurations if the designers allow a higher supply voltage fluctuation. The

results follow the same trend of power delivery. In each case, the power delivery capability

is almost doubled. Fig. 3.40(b) shows the results for a non-uniform current density map

specified in the previous sections. As can be seen from the analysis, with respect to the

hotspots on the chip, the 3-D IC chip-on-VRM case and the backside-of-the-package VRM
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case can push the power density with a larger margin compared to the on-package VRM

configurations.

3.6 Conclusion

This chapter presents a PDN analysis framework for emerging 2.5-D/3-D heterogeneous in-

tegration platforms. Interposer and bridge-chip based integration technologies are bench-

marked and compared from a PDN point of view. Interposer based integration, with the

right technology parameters, can exhibit a smaller IR-drop and transient droop than the

standalone case. However, if the TSV pitch is close in value to that of the C4 bumps, the

results may be worse. While bridge-chip based interconnection platforms present PDN

challenges, especially to the active die regions that overlap with the bridge-chips, results

suggest minimizing this overlap region and using multiple bridge-chips instead of a single

large bridge-chip to mitigate PSN. Moreover, we perform PDN analysis including a PDN in

the bridge-chip. We perform three case studies on two different configurations; the studies

are (1) inclusion of ground network in the bridge-chip, (2) inclusion of power and ground

network in the bridge-chip, and (3) inclusion of MIM capacitors in the bridge-chip. Besides

the CPU-FPGA integration, we also study a stacked memory-FPGA configuration. More-

over, we perform a power delivery network analysis for different benchmark configurations

including voltage regulator modules. Multiple on-package VRMs, 3-D IC chip-on-VRM,

and backside-of-the-package VRM cases are studied. The latter two cases enable supplying

power directly from the bottom of the chip. Because of the proximity from the power sup-

ply to the active circuitry, the power delivery noise of the 3-D IC chip-on-VRM case and the

backside-of-the-package VRM case are the least. With distributed on-chip decoupling ca-

pacitors and package-level discrete decaps, the PSN is minimized in all the configurations.

The impact of on-chip decap density variation is also quantified. For 3-D IC chip-on-VRM

case with uniform current density, 25% improvement in PSN is possible if three times more

decap is used compared to the one used for this analysis. Thermal implications of different
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configurations are evaluated using ANSYS. Despite the 3-D nature, owing to the low power

VRM die, the temperature distribution in the 3-D IC case is comparable to the on-package

VRMs cases. Finally, power delivery limits of different configurations are also analyzed.

The 3-D IC chip-on-VRM case and the backside-of-the-package VRM case are relatively

less sensitive to the hotspots compared to the other configurations discussed in this chapter.
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CHAPTER 4

BENCHMARKING POWER DELIVERY NETWORKS FOR FAN-OUT WAFER

LEVEL PACKAGING (FOWLP) TECHNOLOGIES

Fan-out wafer level packaging (FOWLP) technologies have gained significant attention,

especially in the low power computing space. Fig. 4.1 demonstrates an example of a

heterogenously integrated system that integrates a wide number of functionalities includ-

ing, but not limited to, stacked memories, RF devices, application processors, MEMS,

power management ICs, etc. These state-of-the-art applications demand smaller form fac-

tors, lower power/signaling losses, and stricter resource requirements (metals, capacitors,

etc.). While transistors continue to shrink, the limited scalability of traditional organic

package substrates is the bottleneck for such a multi-functional integration scheme. For

low power applications, a lot of these dice are available in FOWLP. As such, a power

delivery network (PDN) model must reflect the unique features of this technologies for

accurate modeling. Recent work has addressed some power integrity modeling aspects of

FOWLP [ase:ectc2017 , 29]. However, a detailed analysis including distributed on-die and

on-package PDN models with comprehensive design space exploration is missing in the

literature. In this chapter, based on prior PDN modeling efforts for 2.5-D and 3-D ICs

[109, 5, 105], we propose and analyze a PDN modeling framework for steady-state and

Figure 4.1: Packaging trend including FOWLP technology
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transient-state analysis to evaluate and benchmark different FOWLP technologies.

4.1 Modeling Framework

4.1.1 Simulation Configurations

Die-1 Die-2

Die-1 Die-2

(a)

Die-1 Die-2

Die-1 Die-2

(b)

Figure 4.2: (a) Conventional multi-die flip-chip configuration and (b) Conventional multi-
die FOWLP configuration

Die-1

Die-2

Die-2

Die-1

(a)

Die-1

Die-2

Die-2

Die-1

(b)

Figure 4.3: (a) 3-D flip-chip POP configuration and (b) 3-D FOWLP POP configuration

Fig. 4.2 and Fig. 4.3 present the simulation configurations under consideration in

this chapter. Fig. 4.2(a) and 4.2(b) illustrate the conventional multi-die flip-chip config-

uration with organic package and multi-die FOWLP configuration with fine-pitch RDLs,

respectively. Likewise, Fig. 4.3(a) and 4.3(b) present the flip-chip POP and 3-D FOWLP

configurations, respectively. Each configuration consists of two dice. Table 4.1 presents

the specifications of the two dice under consideration. The power consumption of Die-1

and Die-2 is assumed to be 3 W and 2 W, respectively. The power specifications of Die-1

and Die-2 are based on an ARM cortex A9 application processor[118] and a hypothetical

memory/ASIC die [119, 120]. Moreover, we assume a uniform power distribution in each

die. The general PDN parameters are provided in Table 4.2. For the 3-D POP configura-

tions, flip-chip POP is formed using a solder bump-on-solder bump stack while the 3-D

FOWLP stack is formed using through mold via (TMV)-solder bump stack.
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4.1.2 PDN with Multiple Voltage Domain

VDD rail

GND rail

Source 
current

On-die 
decap

Die #1

VDD rail
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Source 
current

On-die 
decap

Die #2

Power BGA

Multiple 
power pillers

RDL VDD rail

RDL GND rail

Lcap_pcb

Rcap_pcb

Ccap_pcb

Ground BGA

Lpcb Rpcb

Lpcb Rpcb

VRM

Multiple 
ground pillers

Figure 4.4: PDN structure for FOWLP technology

We present the generalized PDN structure of a FOWLP system in Fig. 4.4. As evident

from the figure, there are three distinct modeling domains. We use Altera PDN tool [75]

for PCB, VRM, and BGA parameters. In all our configurations discussed in this chapter,

we use distributed package and on-die PDN model. The FOWLP PDN is connected to the

on-die PDN using power/ground copper pillars. The flip-chip counterpart uses an organic

package with power/ground planes instead of a distributed RDL in the FOWLP case.

l
t

w

pitch

Figure 4.5: Loop inductance structure for FOWLP PDN

We assume that the package PDN in FOWLP has a similar configuration as the on-

die PDN. Hence, in the distributed model, each grid is modeled as an RLC circuit. The

Table 4.1: Chip specifications

- Voltage Size Power

Die-1 1.05 V 0.5 cm× 1 cm 3 W

Die-2 1.3 V 0.5 cm× 1 cm 2 W
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Table 4.2: General parameters for PDN model

On-die global wire and FOWLP PDN
Pitch/Width/Thickness (µm)

39.5/17.5/7

On-die decap density (nF / mm2) 3.35

C4 bump diameter/pitch (µm) 60/130

BGA inner diameter/outer diameter/pitch (µm) 250/300/1000

PCB and VRM lumped R/L (µΩ/pH) 1000/120

PCB decap R/L/C (µΩ/nH/µF) 166/19.54/240

resistance of each grid is calculated based on the dimensions of different metal layers and

meshing information. We use analytical formulae to calculate the inductance of the PDN.

Fig. 4.5 shows the parameters that are used for the inductance calculation. For each layer,

we first compute the Geometrical Mean Distance (GMD) [121]. Based on this GMD and

the analysis provided in [121, 122], we calculate the inductance. We also calculate the grid

capacitance based on the parallel plate capacitor model.

Voltage domain I

Voltage domain II
Voltage domain I

Voltage domain II
(a)

Voltage domain I

Voltage domain II
Voltage domain I

Voltage domain II

(b)

Figure 4.6: Voltage domains for each die in (a) Multi-die FOWLP and (b) 3-D FOWLP
POP

As shown in Table 4.1, we consider different power supply domains for each die. We

assume that there is limited utilization of on-die regulators [36] and the power in different
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dice is centrally distributed from the PCB. Hence, the FOWLP PDN is split into differ-

ent voltage domains to support the individual voltage requirement of each die. Fig. 4.6

provides the details related to the PDN splitting. In Fig 4.6(a), we show the PDN for a

conventional multi-die FOWLP configuration for the two-die assembly under considera-

tion. Likewise, Fig. 4.6(b) shows the PDN splitting in a 3-D FOWLP package. In the latter

configuration, we assume that the top die is supplied power using the TMVs and solder

bumps. These TMVs are only available surrounding the bottom die (Die-1), as shown in

the figure.

4.1.3 Analysis Type

We perform time domain and frequency domain analyses. The details of each analysis are

reported in the following subsections.

DC IR-drop and transient analysis

We follow a similar formulation as [5] for our steady-state IR-drop analysis and transient

analysis. In the IR-drop analysis, only the resistive elements of the entire network are

used. However, for the step-response based transient simultaneous switching noise (SSN)

analysis, we consider the inductive and capacitive elements along with the resistive ones to

characterize the power supply noise. In the latter analysis, we assume that all on-die nodes

are simultaneously switching from zero current to a current value determined by the total

power and the rail voltage of each die. The rise time of is assumed to be 1 ns.

Frequency domain impedance analysis

The frequency domain analysis is similar to the steady state analysis with some modifica-

tions. First, we exclude the on-die PDN from the overall network. Second, we convert the

PDN into an impedance network. Third, we group together all the C4 bumps/copper pillars.

Fourth, we apply an AC current source to the group of bumps/pillars. Finally, we sweep
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Table 4.3: Specifications for conventional multi-die FC-BGA and FOWLP PDN modeling

Parmaters FC-BGA FOWLP

Package size 2 cm× 1.5 cm 2 cm× 1.5 cm

Package thickness [30] 250 µm 50 µm

Mold height 140 µm 140 µm

Number of chips 2 2

Solder ball height[30] 170 µm 195 µm

Number of package layers[30, 29] 4 2

Die-to-package bumps[29, 8] C4 bumps Copper pillars

Total thickness on top of the PCB 560 µm 385 µm

the frequency to get the desired response. For each frequency, the framework regenerates

the PDN and solve for the impedance.

4.2 FOWLP Benchmarking

In this section, we discuss the design rules and present the power supply analysis results

for conventional different FOWLP configurations. Moreover, we compare the analysis with

traditional FC BGA packages. We refer to multi-die packages as ’FOWLP’ and ’FC’, re-

spectively. For vertical stacking, we refer to configurations as ’3-D FOWLP’ and ’FC POP’

respectively. Additionally, we analyze an additional ’baseline’ case. In this design, we as-

sume that each die under consideration has a standalone fan-out based package. Hence,

there is no resource sharing in this configuration.

4.2.1 Specification

Table 4.3 provides the detailed specifications of a conventional multi-die FOWLP configu-

ration. There are four package layers in the flip-chip configuration whereas only two layers

are used in the FOWLP configuration. As shown in the table, the FOWLP package is ∼30%

thinner than the flip-chip package under consideration. Table 4.4 provides the details of

analyzed 3-D FOWLP configuration. Each package in a POP structure contains a single
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Table 4.4: Specifications for 3-D FC-POP and FOWLP-POP PDN modeling

Parameters FC-POP FOWLP-
POP

Package size 1.5 cm×
1.5 cm

1.5 cm×
1.5 cm

Bottom package thickness[30] 250 µm 50 µm

Top package thickness [30] 125 µm 25 µm

Mold height 140 µm 140 µm

Number of chips 2 2

Solder ball height [30] 170 µm 195 µm

Number of bottom package layers
[29, 8]

4 2

Number of top package layers [29,
8]

2 1

Chip-to-package bumps [30, 29] C4 bumps Copper
pillars

Total thickness on top of the PCB 995 µm 745 µm

die. As mentioned in Section II, the bottom package is split into two power supply domains

such that the PDN surrounding the bottom chip has a power supply domain corresponding

to the top die. The top package has two metal layers in the flip-chip case and one metal

layer in the FOWLP case, respectively. Compared to the FC POP stack, the FOWLP POP

stack is ∼25% thinner.

4.2.2 PDN Analysis Results

Fig. 4.7 presents the DC IR-drop results for each configuration. Between multi-die FOWLP

and FC configurations, Die-1 has the maximum IR-drop in both cases. This can be at-

tributed to the higher current requirement of the die owing to the higher power and lower

rail voltage. We observe more than 50% reduction in the IR-drop for die-1 in the FOWLP

configuration compared to its flip chip counterpart. The IR-drop reduction in the die-2 is

also a significant 38%. Unlike the results of the multi-die package, we see that the lower-
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Figure 4.7: DC IR-drop results for (a) Die-1 and (b) Die-2 for baseline, multi-die FOWLP,
multi-die FC, 3-D FOWLP, FC POP configurations

power die has higher IR-drop in both 3-D configurations. In both FC POP and 3-D FOWLP

configurations, the PDN path to the lower power die (Die-2, i.e., top-most die) consists of

package-to-package interconnections (solder bump-to-solder bump in FC POP and TMV-

to-solder bump in 3-D FOWLP). Hence, the PDN-path for Die-2 is more critical compared

to that of Die-1. Compared to FC POP case, we can see more than 50% reduction in Die-1

and 25% reduction in Die-2 in the 3-D FOWLP case. This pattern is very much depen-

dent on the different package configurations under consideration and the number of BGAs

allocated to each die (recall, Die-1 and Die-2 have separate voltage domains), etc. In the

baseline configuration where each die is a standalone fan-out based configuration, we re-

port the best achievable IR-drop for each die. IR-drop results for FOWLP configurations

are closer to these hypothetical lower limits than the FC configurations under consideration.

Fine pitch RDL in FOWLP technology can also increase the interface bandwidth in a

multi-die package. Fig. 4.8 shows the frequency domain impedance analysis results seen

from the package-to-die connections excluding the on-die PDN. Fig. 4.8(a) and 4.8(b)

show the impedance response for Die-1 and Die-2, respectively. It is evident from the
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Figure 4.8: Impedance analysis results (a) Die-1 and (b) Die-2 for FC, FOWLP, FC POP,
and 3-D FOWLP configurations

figure that there is a significant reduction in the PDN impedance for a wide range of fre-

quencies. For example at 150 MHz, both dice in FOWLP and 3-D FOWLP configurations

have impedance ∼6× lower than that of the FC based configurations. The impact is a little

more pronounced in the 3-D FOWLP case since the Die-2 network is more critical than the

multi-die FOWLP configuration. This sort of low PDN impedance can lead to lower power

required for transistor switching and hence, better power integrity.

We also characterized the FOWLP and FC configurations for transient SSN. Fig. 4.9(a)

shows the results for both FC and FOWLP multi-die configurations. For both Die-1 and

Die-2, there is a 17% and 22% reduction in PSN in the FOWLP case compared to the FC

case, respectively. This reduction can be attributed to the lower package inductance in the

FOWLP technology along with lower inductance of the package-to-die interconnections.

Additionally, the plated through hole vias in the organic packages are inductive as well.

Owing to the thinner package (absence of the package core), there is no need for these

vias in the FOWLP technologies. Hence, for a combination of all these reasons, the power

integrity performance of the FOWLP configurations are superior to the FC BGA configu-

rations. Compared to the baseline configuration, the FOWLP case provides 1.1× and 1.9×

PSN (1.4× and 2.3× for FC configurations) for Die-1 and Die-2, respectively. Fig. 4.9(b)
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Figure 4.9: Simultaneous switching noise based transient analysis results for (a) multi-die
package and (b) 3-D package-on-package configurations. Each figure shows PSN results
for both Die-1 and Die-2. The baseline configuration is a single die in a single package
case.

presents the transient analysis results for different POP packages under consideration. As

evident from the figure, there is a significant reduction in the transient PSN for FOWLP

configurations. In the FC POP configurations, there are two organic packages each con-

tributing to the parasitics in the PDN path. Moreover, there are more bump parasitics in

series in the PDN path. The reduction of the package thickness in FOWLP configurations

reduces the PDN parasitics even more compared to the FC POP configurations. Moreover,

TMVs are denser than solder bumps which reduces the effective parasitics of these com-

ponents. All these different contributing factors result in a lower PSN in the FOWLP POP

configurations. Between multi-die FOWLP and 3-D FOWLP configurations, we observe

a 9 % reduction in Die-1 PSN whereas a 18 % increase in Die-2 PSN for 3-D FOWLP

configuration with respect to the multi-die FOWLP configuration. However, owing to the

vertical stacking, 3-D FOWLP configurations might reduce footprint while increasing the

thickness of the stack. It is up to the designers to consider these different design rules to

perform a trade-off analysis suitable for a specific design.
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4.3 Design Space Exploration of Fan-out Wafer Level Technology

In this section, we perform a comprehensive design space exploration of power delivery

in FOWLP and 3-D FOWLP technologies. This includes impacts of solder bump distribu-

tion, RDL resistivity, copper pillar pitch, RDL distribution, through mold via distribution.

Finally, we show a comparison of PSN in FOWLP, FC POP, 3-D FOWLP, and TSV based

3-D IC configurations.

4.3.1 Impact of Solder Bump Distribution
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Figure 4.10: Impact of solder bump pitch on (a) multi-die FOWLP and (b) 3-D FOWLP
configurations. In both cases, we report the worst-case scenario; we report Die-1 results
for multi-die FOWLP and Die-2 results for 3-D FOWLP configurations.

Thus far, we have considered a solder bump pitch of 500 µm in this chapter. In this

study, we sweep the solder bump pitch from 100 µm to 1000 µm. For each BGA pitch

lower than the baseline case, there are more bumps available for power delivery. Fig.

4.10(a) reports the IR-drop and transient analysis results for conventional multi-die FOWLP

configuration. If we increase solder bump pitch from 100 µm to 1000 µm, there is a 54%

variation in the transient PSN. Moreover, our DC IR-drop analysis shows a 25% variation

for a similar change in the solder bump pitch. For 3-D FOWLP configurations, we assume

that different bump pitches change the bump distribution in both tiers. From Fig. 4.10(b),
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we can see that across different bump pitches, there is ∼20% variation in both DC IR-drop

and the transient SSN.

4.3.2 Impact of RDL Density
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Figure 4.11: Impact of RDL resistivity on PSN for (a) multi-die FOWLP and (b) 3-D
FOWLP configurations.

High density RDL is one of the key advantages in fan-out packages. There are two

processes which impose restrictions on RDL density in a FOWLP package: Mold-first

and RDL-first. Each process has inherent advantages over the other one. However, one key

advantage of the RDL-first process is that the RDL density can be extremely high compared

to the Mold-first process. These different processes change the effective sheet resistance

and hence, the effective resistance of the RDLs. Moreover, scaling technology nodes can

significantly increase the PDN resistivity [123]. Throughout the chapter, we considered a

high density RDL process where the resistivity of the RDLs is equal to the resistivity of

copper. In this study, to reflect the change in RDL density, we sweep the RDL resistivity

from the baseline value to 5 times the baseline value. Fig. 4.11(a) shows the results for this

analysis. We present results from the steady state IR-drop perspective. Our analysis shows

that if the RDL resistivity increases by 5x, there is a 24% increase in the maximum IR-drop
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in FOWLP configuration under consideration. Fig. 4.11(b) shows similar analysis results

for a 3-D FOWLP configuration. Our analysis shows that if the RDL resistivity increases

by 5x, the IR-drop increases significantly in the Die-2. The solder bumps deliver power to

the top die from the periphery. The RDL in the top package plays a significant role in the

PDN path impedance. Hence, we see such impact of RDL resistivity on 3-D FOWLP PSN.
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Figure 4.12: Impact of on-die PDN resistance on FOWLP supply noise

We also varied the on-die PDN resistance from our baseline value of 1 Ω/µm to 10

Ω/µm. We believe both multi-die and 3-D FOWLP configurations will follow a similar

trend and hence, we only present the results for a multi-die FOWLP package. The results

are summarized in Fig. 4.12. For a full range sweep, we observe a 47% variation in the

maximum IR-drop seen in the dice.

4.3.3 Impact of Copper Pillar Pitch

In our initial design, we use 40 µm pitch for copper pillars connecting the package RDL

and the on-die PDN. In this analysis, we sweep this parameter from 20 µm to 120µm. As

we increase the copper pillar pitch, the more resistive on-die PDN contributes additional

supply noise. As we increase this pitch similar to the flip-chip case, we see a similar DC

IR-drop in the dice as we observed in the FC case. This proves the advantage of the dense
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Figure 4.13: Impact of RDL to on-die PDN connectivity both FOWLP supply noise

copper pillars in the FOWLP technologies.

4.3.4 Double-sided RDL in 3-D FOWLP Technology

Die-1

Die-2

Figure 4.14: Double sided RDL in FOWLP POP structure

In a typical FOWLP POP structure, there are TMV + solder bumps connecting the top

layer of the bottom package to the bottom layer of the top package. Hence, the solder bump

distribution for the top package is an area-array distribution. The top package spreads the

current towards the chip from these peripheral bumps. There have been research efforts

[124] focused on making double sided RDLs for a FOWLP POP application. Fig. 4.14

presents such a configuration. In such configurations, the TMVs conduct the necessary

current from the bottom package. These current spreads in the top layer of the bottom

package located on top of the Die-1. Owing to the fine pitch RDLs, the solder bumps of the

top package can be uniformly distributed. There are two advantages of a configuration of
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Figure 4.15: (a) IR-drop analysis and (b) transient analysis results for Double sided RDL
3-D FOWLP structures. The figures show a comparison between Die-2 PSNs for 3-D
FOWLP and 3-D double sided RDL configurations, respectively.

this sort. First, there are more RDLs in parallel for the spread of current in the top package

which reduces the effective resistance and inductance. Second, there are more number of

bumps for the top package. This reduces the bump parasitics for the top package further.

As a result of this reduction in parasitics, there is less IR-drop and transient noise induced

in Die-2. Fig. 4.15 summarizes the results for this configuration. Compared to a typical

FOWLP POP configuration discussed in this chapter, the IR-drop is reduced by 25% as

shown in Fig. 4.15(a). In terms of transient noise, there is a 16% reduction if a FOWLP

package has double RDLs in the bottom package. Fig. 4.15(b) presents this result. We

assume that the additional RDL in the bottom package only changes the PDN configuration
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of the top package. Hence, we have not seen any significant change in the PSN results of

the bottom die (Die-1).

4.3.5 Through Mold Via Distribution
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Figure 4.16: Different TMV-BGA distribution for the top die in 3-D FOWLP configura-
tions: (a) Single line BGA+TMVs and (b) Dual-line BGA+TMVs

We studied the impact of different TMV distributions. For this study, we allocated

30% of the solder bumps to the top die for a FOWLP POP configuration. Each bump is

connected to a bundle of TMVs for package-to-package interconnection. We looked at

two specific solder bump+TMV distributions as shown in Fig. 4.16. In the first scenario,

the interconnections are distributed along the periphery of the top package. In the second

scenario, the bumps are distributed only at the two opposing sides. In each case, there is

more than 50% increase in the PSN compared to the baseline design with uniform split

of the bumps in the bottom package. Compared to the PSN in the first scenario as in

Fig. 4.16(a), the PSN in the second scenario (Fig. 4.16(b)) is ∼10% higher. This can be

attributed to the reduction of effective PDN path from the bumps to the active circuitry.
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4.3.6 Comparison Between 3-D FOWLP, FC POP, and 3-D IC with FOWLP
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Figure 4.17: Power supply noise comparison for different integration technologies

In this segment, we analyze a thorugh silicon via (TSV) based 3-D IC stacking of the

dice under consideration. We assume that the Die-1 has TSVs delivering power to Die-

2. Moreover, we assume that the 3-D IC stack is bonded with a fan-out package, and

the FOWLP based 3-D IC is balled to the PCB. Fig. 6.9 shows the PSN results for this

analysis. We compare this 3-D IC configuration with FC POP, 3-D FOWLP, and baseline

configurations. Recall, baseline configuration is a single die package with similar package

size as 3-D FOWLP configuration. We normalize the results with respect to the baseline

case. Since Die-2 has longer parasitic PDN path, we exclude Die-1 from this analysis. As

shown in the figure, 3-D IC configuration provides 27 % and 45 % lower IR-drop compared

to 3-D FOWLP and FC POP configurations, respectively. However, our analysis shows that

from the transient SSN perspective, 3-D IC case provides slightly smaller (<10 %) first

droop as we obtain from the 3-D FOWLP case. Hence for specific applications, it is up to

the designers to decide whether to pursue 3-D IC stacking with its inherent manufacturing

complexities, instead of 3-D FOWLP configurations.
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4.4 Conclusion

In this chapter, we present a framework for analyzing power delivery networks in Fan-out

Wafer Level Packages. Since the fan-out packages have fine pitch RDLs, we model these

packages in an on-die PDN fashion. We analyze both conventional multi-die FOWLP and

3-D FOWLP package-on-package structures. For each FOWLP configuration, we compare

the results with its flip chip based counterpart. We perform three different types of analysis:

steady state IR-drop, frequency domain impedance, and transient analysis. Our results

indicate that, owing to the shorter interconnection in the FOWLP configurations, the power

supply noise decreases significantly. On average, we show close to a ∼20 % reduction

for the conventional multi-die FOWLP packages and more than ∼30 % reduction for the

3-D FOWLP structures. We also perform sensitivity analysis of the FOWLP packages on

different system level parameters. It is evident from our results that if a FOWLP package

uses tighter pitch BGA, there will be significant reduction in PSN for both types of FOWLP

packages. Having modified our framework to analyze a double sided RDL configuration

for FOWLP POP packages, we present ∼20 % reduction in PSN for this kind of structures.

The impact of the TMV distribution in the top package is noteworthy. Our results on

different RDL resistivity indicates that 3-D FOWLP technologies are more sensitive to this

parameter than the multi-die FOWLP configurations.
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CHAPTER 5

POWER DELIVERY NETWORK (PDN) MODELING FOR BACKSIDE-PDN

CONFIGURATIONS WITH BURIED POWER RAILS AND µTSVS

Backside PDN configuration attempts to tackle some of the PDN challenges by separating

the on-die PDN from the conventional back-end-of-the-line (BEOL) [125]. This approach

is a complete redesign of existing architectures in that both sides of the silicon have met-

allization layers. Moreover, alternative metallization is considered for the bottom-most

metals to tackle the resistivity challenges. Therefore, in this chapter, based on our prior

PDN modeling techniques [5, 96, 109], we develop a framework to analyze power sup-

ply noise (PSN) in a backside PDN configuration. Furthermore, using this framework, we

benchmark the backside PDN configuration with respect to a conventional BEOL PDN to

identify unique opportunities as well as limitations of this approach.

The chapter is organized as follows: in Section II, we introduce the differences between

backside and conventional front-side PDN configurations. In Section III, we evaluate the

power delivery performance of a backside PDN configuration. We present results for dif-

ferent power maps and compare modeling results with physical design results. In Section

IV, we perform a design space exploration; we analyze impacts of package-to-die inter-

connection pitch, input pulse, capacitor density on PDN performance. Additionally, we

investigate the thermal implication of dielectric bonding for a backside PDN configuration.

5.1 Modeling Framework and Specifications

5.1.1 Simulation Configurations

In a conventional PDN approach, as shown in Fig. 5.1, die VDD/VSS I/Os Interconnect

to the global metal PDNs in the BEOL. Next, the global PDN connect to the local PDN
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Figure 5.1: Die placement and metal configurations for a conventional front-side PDN
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Figure 5.2: On-die PDN structure for (a) conventional interleaved BEOL PDN configura-
tion and (b) meshed backside PDN configuration

(bottom metal layers and local interconnects) using inter-metal vias [126]. Fig. 5.1 also

presents a backside PDN configuration that we explore in this chapter. The figure shows

the die placement on the package and a detailed segment of the die highlighting the supply

(VDD or VSS) I/Os and the PDN. There are two types of metallizations in this configu-

ration. The conventional BEOL is located on the front side of the die and is directly con-
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nected to the front-end-of-the-line (FEOL). This front-side BEOL interconnect network is

primarily dominated by the signaling network. In the proposed approach, the backside met-

allization of the die is dedicated to the PDNs. Additionally, this configuration has a buried

power rail (BPR) network within the FEOL to locally supply power to active circuits. BPR

is interconnected to the backside PDN using µTSVs.

We consider three separate PDN domains in the modeling [5, 105]: on-die, package,

and board level PDNs. In the backside PDN configuration, we assume a re-design of the

on-die PDNs. Package and board domains remain similar in both configurations. Fig. 5.2

presents the structure of an on-die PDN. The conventional PDN (within BEOL) is an inter-

leaved structure, as shown in Fig. 5.2(a), whereas the backside PDN is a mesh-like network.

Fig. 5.2(b) shows the on-die PDN for a backside PDN configuration. The bottom two metal

layers in each configuration are connected by different via resistances: dense inter-metal

via stack in the conventional BEOL configurations and µTSVs in the backside configura-

tions. Moreover, the top-most metal layer is connected to the package PDN by C4 bumps

and copper pillars in the conventional BEOL PDN and backside PDN, respectively.

5.1.2 Specifications

In each configuration, we consider 3 metal layers (local interconnect/BPR, M1, and M2)

for the PDN. The specifications are tabulated in Table 5.1. We consider high aspect ratio

Ru based bottom-most metal layer for the backside PDN configurations [127, 128]. For

advanced technology nodes, Ru provides a significant reduction in resistivity compared

to other conventional metal options (Cu, Co, etc.) [74]. Moreover, in the backside PDN

configuration, the package-to-die bumps are denser compared to conventional PDN; denser

bumps improve the distribution of current. We use similar inductance values for package

traces, microbumps, solder bumps, etc. as in our prior PDN modeling effort [5]. Addi-

tionally, the inter-metal via resistance for bottom metals is ∼7x smaller in the backside

configuration compared to similar connections in conventional BEOL PDNs [129, 74].
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Table 5.1: PDN specifications for different configurations

Parameters Conventional PDN Backside PDN

No. of metal layers 3 3

PDN metal Local Int: Cu, M1: Cu,
M2: Cu

BPR: Ru, M1: Cu,
M2: Cu

PDN metal resistance
(Ω/µm)

Local Int: 500, M1: 1,
M2: 1

BPR: 50, M1: 1, M2: 1

µTSV
Diameter/Height/Resistivity

(nm/nm/nΩm)

N/A 50/500/80

Via resistance (Ω/via) Local Int-M1: 160,
M1-M2: 2

BPR-M1: 24,
M1-M2: 2

Die-to-package bumps Diameter: 70 µm,
Height: 140 µm, Pitch:

140 µm

Diameter: 20 µm,
Height: 40 µm, Pitch:

40 µm

On-die decoupling cap
(nF/mm2)

1.8 1.8

Package effective decap
R/L/C (mΩ/pH/µF)

541.5/220.7/52 541.5/220.7/52

Package
resistance/inductance

(mΩ/mm/pH/mm)

1.2/24 1.2/24

PCB decap R/L/C
(µΩ/nH/µF)

166/19.54/240 166/19.54/240

PCB resistance/inductance
(µΩ/pH)

166/21 166/21

This reduction can be attributed to the via stack through the signaling network in a conven-

tional BEOL [126]. We consider both uniform and hotspot based power maps for the PDN

analysis. In uniform power map analysis, total die power is uniformly distributed across

the die. In hotspot power density maps, some areas of the die consume significantly more

power than the rest of the die. For the uniform power map case, we consider 74.49 W/cm2

[58] power density. Unless otherwise specified, we use this power for uniform power map

analysis throughout the chapter. We assume a 5 mm × 5 mm die with 0.9 V rail voltage
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throughout the chapter. We consider two types of on-die decoupling capacitors: die-level

MOS caps and metal-insulator-metal (MIM) capacitors (caps) connected to the top metal

layers.

5.1.3 Adaptive Meshing

We use domain specific adaptive meshing for PDN modeling; we use different grid sizes

for on-die, package, and board PDNs. For hotspot power density analysis, we use within-

die adaptive meshing technique. In our prior PDN modeling, we have used package-to-die

bump granularity for meshing [5]. In within-die adaptive meshing, we use denser grids in

the hotspot regions while using coarse grids for the rest of the die. For example, if we have

a 100 µm × 100 µm hotspot in a 5 mm × 5 mm diefor the front side PDN configuration, we

use 1 µm grid for the hotspot and 140 µm grid for the rest of the die. Using a 1 µm grid for

the whole die would yield 25 M nodes for a single layer of the PDN. On the contrary, using

a 140 µm grid would compromise on accuracy of the PDN model. The adaptive meshing

technique reduces the number of total mesh elements while performing a fine-grain PDN

analysis for critical die blocks.

5.2 Power Delivery Network Benchmarking

In this section, we present the PSN results for both configurations. We exclude MIM caps

from the analysis in this section.

5.2.1 Uniform Power Density Maps

We explore the step response based simultaneous switching noise for both configurations

using a 400 ps rise time. Fig. 5.3 summarizes the results. We report the improvement

in each noise droop for the backside PDN configuration with respect to its conventional

front-side counterpart. From the DC IR-drop analysis, the backside PDN provides more

than 4x reduction in PSN. This reduction can be attributed to the denser PDN and denser
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Figure 5.3: Power supply noise results for uniform power map

package-to-die bumps in such a configuration. Examining the inductive noise, we observe

a significant 32% and a 44% reduction in first droop and second droop noise, respectively.

Only the on-die PDNs are modified between two configurations. The unmodified package

PDN is mostly inductive and hence, for this uniform power map case under consideration,

we do not observe as much reduction in the first droop noise as the DC IR-drop noise.

5.2.2 Hotspot Power Densities

The uniform power map case emulates the worst case scenario where all the die nodes

are switching simultaneously. However, this is an average power map across the die. The

micro-scale circuit blocks have a higher power density compared to an average power map

[5]. Moreover, we have stated previously that owing to higher densities, advanced tech-

nology nodes, such as 7 nm, 3 nm, etc., will consume significantly higher power [76]. We

emulate such an aggressive micro-scale power map in Fig. 5.4(a). While we keep the die

size unchanged as 5 mm × 5 mm, we assume that 0.3 W is being consumed in a 100 µm ×

100 µm region. Moreover, we assume that the rest of the die is not consuming any power.

For simplicity, we begin with one such hotspot and observe 32 mV and 130 mV peak IR-

drop in the backside PDN and the conventional BEOL PDN configurations, respectively.

This single hotspot simulation is an emulation of a standalone computing block [125, 76].
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Figure 5.4: (a) Power map with five adjacent hotspots, (b) PSN results for the hotspot
power map with zero background power, and (c) PSN results for the hotspot power map
with 17.1 W uniform background power
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To emulate a more realistic scenario, we add four additional such hotspots surrounding the

first one. This equates to a total die power of 1.5 W. This case emulates multiple cores or

computing blocks running in parallel. For the five hotspots case, we observe 50 mV and

240 mV peak IR-drop in the backside PDN and the conventional BEOL PDN configura-

tions, respectively. Fig. 5.4(b) summarizes these results. For a backside PDN configuration

compared to its conventional counterpart, the single hotspot and five hotspots cases provide

a 4x and 5.4x reduction in PSN, respectively. The Ldi/dt noise reflects the impact of both

inductive and resistive components of a network. Since hotspot power density maps create

significantly higher DC IR-drop in the conventional BEOL PDN configurations, unlike the

uniform power map case, we observe a similar improvement in both steady-state and tran-

sient analysis results for a backside PDN configuration. Fig. 5.4(c) shows the results for

five hotspots case with a total power of 18.6 W. This case is a combination of the uniform

power map and the high-density hotspot power map under consideration. In this analysis,

the first droop noise is 2.5x lower in the backside PDN configuration compared to the front-

side PDN case. However, similar to other case studies with different power maps, second

and third droop show a similar greater than 4x reduction. In Fig. 5.4(b) and 5.4(c), the total

power consumption is 1.5 W and 18.6 W, respectively. For higher power consumption, the

package and board losses are significantly higher and hence, compared to Fig. 5.4(b), we

observe an increase in second and third droop noises in Fig. 5.4(c). For a zero background

power case, only a few on-die nodes are switching as opposed to all on-die nodes in a non-

zero background power case. Hence, we do not observe greater than 4x reduction in the

first droop noise as we observe in Fig. 5.4(b).

5.2.3 Physical Design Results

We perform physical design implementation for both configurations for a RISC-V archi-

tecture. Table 5.2 summarizes the results. For conventional BEOL PDNs, we implement

PDNs of different densities. We use contacted poly pitch (CPP) to reflect the scaling of
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Figure 5.5: Physical design results for different PDN configurations

technology nodes [125] and hence, PDN density. Furthermore, we implement conventional

BEOL PDN with BPR, backside PDN with standard power rails, and backside PDN with

BPR. After placement and routing, we observe a 25%-30% area reduction in the backside

PDN configurations. We normalize the peak IR-drop in each configuration to the IR-drop

value for the backside PDN configuration with BPR. From physical implementations, we

observe that each metric has a minimum 4x reduction for a backside PDN configuration

with BPR. In Table 5.3, we compare the PDN modeling results with the physical imple-

mentation results. The conventional BEOL PDN is a dense 8 CPP design. The backside

PDN configuration is an 8 CPP design with µTSVs. From physical design results, we

Table 5.2: Summary physical design results for a RISC-V architecture

Technology PDN density Area (µm2) Peak IR-drop
conventional BEOL PDN 8 CPP 8594 4x

16 CPP 7365 7.5x
24 CPP 6874 9x

conventional BEOL PDN
+ BPR

48 CPP 6874 4x

Backside PDN excluding
BPR

32 CPP 6446 4x

Backside PDN + BPR 8 CPP µTSV 5926 1x
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Table 5.3: Summary PSN results from physical design and PDN modeling

Configuration PDN
den-
sity

Target
density

(%)

Peak
IR-drop

from
physical
design

Peak
steady-state

IR-drop from
PDN

modeling

Peak Ldi/dt
noise from

PDN
modeling

conventional
BEOL PDN

8 CPP 65 4x 4x 5x

Backside PDN 8 CPP
µTSV

87 1x 1x 1x

observe better core utilization in the backside PDN configurations. Fig. 5.5 shows the ex-

tracted IR-drop results from physical implementation for both configurations. Although

the physical design is an exact architectural implementation whereas the PDN modeling

framework in this chapter is abstract modeling from high-level PDN parameters, e.g., num-

ber of metal layers, dimensions of PDN metals, decoupling cap densities, etc., both in

steady-state IR-drop and transient Ldi/dt noise analysis, we observe similar trends between

physical implementation and PDN modeling results. Owing to the generalization in the

PDN modeling with larger die size and inclusion of the package and the board PDN, we

observe some discrepancy between results of the physical design and the PDN modeling

framework.

5.3 Sensitivity Analysis

In this section, we show results from design space explorations to determine the limits and

benefits of a backside PDN configuration.

5.3.1 Chip-to-Package Interconnection

Throughout the chapter, we assume 40 µm pitch die-to-package interconnections for back-

side PDNs and 140 µm pitch for conventional BEOL PDNs. In Fig. 5.6, we report results

for varying pitches in each configuration. We report the maximum transient Ldi/dt noise
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Figure 5.6: Peak IR-drop comparison for different package-to-chip bump pitches

for each variant. For each pitch value, backside PDNs provide almost 2x reduction in PSN

compared to its conventional BEOL counterpart. This reduction can be attributed to the

denser PDN along with lower via resistance for lowest metal layers. This essentially means

better performance in the backside PDNs. Moreover, we observe that scaling I/O pitch can

have a significant impact regardless of the configuration, and denser power/ground (P/G)

I/Os are favorable in both cases. For both configurations, compared to 140 µm pitch, 40 µm

pitch interconnections provide 2x improvement in PSN. An assembled die has successively

higher resistance metal traces from board to die-level PDNs. As such, between the pack-

age PDN and the die PDN, package PDNs have lower resistance and hence, help spread

the current. Denser P/G bumps enhance this spreading in the package level. Hence, we

observe this improvement in PSN with respect to bump pitch reduction.

5.3.2 Impact of Input Pulse

In this analysis, we evaluate the step response by varying the rise time of the input current

load. We assume the uniform power map discussed in this chapter. We sweep the rise time

from 200 ps to 1 ns. Fig. 5.7 presents the results for these different rise times. For refer-

ence, we also report the step response for conventional BEOL PDN with 1 ns rise time. As

expected, with increased rise time, the PSN reduces in the backside configuration. How-
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Figure 5.7: Impact of rise time variation on step response for backside PDN configuration.
The red line shows the step response result for conventional BEOL PDN with 1 ns rise time

ever, between a backside PDN switching with 400 ps rise time and a conventional BEOL

PDN switching with 1 ns rise time, we observe a similar supply noise. Hence, a backside

PDN enables faster switching compared to a conventional front-side PDN configuration.

5.3.3 MIM Decoupling Cap Density
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Figure 5.8: (a) Step response results for different MIM densities and (b) supply noise for 1
GHz pulse input

One additional advantage of the backside PDN configuration is to have denser MIM
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caps connected to the top level metal layers. This is facilitated by the separation of signaling

layers from the PDNs of the dice. Throughout the chapter, we exclude the MIM caps

from the analysis. In this subsection, we investigate the impact of MIM cap density on

PSN, as shown in Fig. 5.8(a). We use a uniform power map and step response based

simultaneous switching noise analysis for this analysis. We vary the MIM density from

0 nF/mm2 to 50 nF/mm2. The 0 nF/mm2 MIM density corresponds to the backside PDN

analysis results shown in Fig. 5.3. As we increase the MIM cap density, the transient droop

reduces. However, beyond a certain cap density, PSN does not improve any further. From

the figure, we can see that beyond 10 nF/mm2, the second droop begins to dominate the

PSN. The inset of Fig. 5.8(a) shows the noise profile for a 50 nF/mm2 MIM cap density.

This is representative of noise profiles with MIM cap densities greater than 10 nF/mm2.

In the second part of this analysis, we explore a different input excitation for PSN anal-

ysis. We analyze simultaneous switching noise for an input pulse with 1 GHz frequency.

The input has 400 ps rise time, 200 ps conduction time, and 400 ps fall time, respectively.

Fig. 5.8(b) summarizes the results for this analysis. We consider three different MIM cap

densities (0.5 nF/mm2, 5 nF/mm2, and 50 nF/mm2). Evidently, as we increase the MIM

cap density across the die, both supply noise and supply noise fluctuation reduce signifi-

cantly. As we increase MIM cap density from 0.5 nF/mm2 to 5 nF/mm2, the peak-to-peak

fluctuation of the supply voltage reduces by more than 3x. A higher cap density may not

improve the first droop noise, however, it helps reduce the high-frequency noise ripple.

5.3.4 Thermal Implications of a Backside PDN Configuration

The backside PDN configuration uses a dielectric bonding of the active layers with a car-

rier wafer. Compared to a conventional front-side PDN configuration, this bonding layer

increases the junction-to-ambient thermal resistance. We use our thermal modeling frame-

work [58] to evaluate the impact of this additional layer on the thermal performance of a

backside PDN configuration. For this analysis, we assume a 1 cm × 1 cm die with 74.49 W
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power. Although the dielectric bonding layer is typically a 1 µm∼2 µm, we simulate for

up to 20 µm dielectric bonding layer in the backside PDN configuration. We assume that

the dielectric bonding layer has a thermal conductivity of 0.9 W/m-K which is similar to

the thermal conductivity of SiO2. Moreover, we assume an air-cooled heat sink with 0.218

oC/W case-to-ambient thermal resistance.

22

79.6 oC ~ 66.6 oC 79.5 oC ~ 66.7 oC

(a)

79.6 oC ~ 66.6 oC

(b)

Figure 5.9: Temperature distribution for (a) conventional front-side PDN configuration and
(b) backside PDN configuration

Fig. 5.9 shows the thermal results for both configurations. As evident from the fig-

ure, According to our analysis, the additional dielectric bonding layer in the backside PDN

configuration has a negligible impact on temperature distribution of the dice. The conven-

tional front-side PDN configuration and the backside PDN configuration have a maximum

junction temperature of 79.5 oC and 79.6 oC, respectively.

5.4 Conclusion

In this chapter, we present a PDN modeling framework for backside PDN configurations.

Backside PDN configurations are similar to double side processed dice with signaling net-

work and power delivery network on either side of the FEOL. Owing to the denser PDN and

new materials for bottom-most metal, this configuration provides significant improvement
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in power supply noise reduction. We use a uniform power map to emulate a real computing

block and a non-uniform power map to emulate futuristic computing blocks at advanced

technology nodes. For both power maps, we observe greater than 4x reduction in power

supply noise in the backside PDN configurations relative to conventional BEOL counter-

parts. We use physical implementation of a RISC-V architecture to validate our modeling

results. Our physical design shows a 25%-30% area improvement in the backside PDN con-

figuration compared to the conventional BEOL configurations. Our package-to-die bump

pitch analysis shows at least 2x performance improvement for a backside PDN configura-

tion over a conventional counterpart. We sweep the rise time of the input pulse. We observe

that a backside PDN configuration with 400 ps rise time provides a similar noise profile of

a conventional BEOL configuration with 1 ns rise time. Moreover, based on our assump-

tions, we observe that a MIM cap density greater than 5 nF/mm2 does not improve the first

droop noise further, however, more MIM caps can reduce high-frequency ripple for a given

input pulse. Despite the inclusion of a thermally resistive bonding layer, thermal modeling

results indicate that the backside PDN configuration has similar temperature distribution as

a front-side PDN configuration.
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CHAPTER 6

THERMAL- POWER DELIVERY NETWORK (PDN) CO-ANALYSIS OF 2.5-D

INTEGRATION TECHNOLOGIES

In prior chapters, PDNs have been analyzed for different emerging heterogeneous inte-

gration technologies. However, PDN and temperature of a given configuration are inter-

dependent. Fig. 6.1 shows the dependencies between power dissipation, temperature, and

power delivery network (PDN). Without considering the interactions between each of the

components in Fig. 6.1 for emerging architectures with increased power density, the results

from the standalone or partially integrated models could be overestimated.

Figure 6.1: Thermal-PDN interaction models

In previous efforts [5, 7], we benchmarked our PDN and thermal models to open source

IBM benchmarks and finite element based modeling using ANSYS, respectively. More-

over, we presented the PDN results for different 2.5-D integration technologies in [5] and

thermal-PDN co-analysis results for 3-D stacked ICs in [7]. However, in [7], only the

on-die PDN is considered. A detailed distributed package PDN model for different 2.5-D

integration technologies is necessary to capture the unconventional PDN interfaces of these

technologies, as shown in Chapter 3. Also, for better convergence of the simulation, the

interconnect loss of a system needs to be fed back in consecutive iterations. Hence, In this

chapter, we present a complete thermal-PDN co-analysis framework for multi-die pack-
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ages and bridge-based technologies [6]. We also present the thermal modeling results for

a bridge-chip based 2.5-D configuration. Moreover, we present the results from a thermal-

PDN co-analysis perspective. We report results from both steady-state and transient-state

analysis.

6.1 Thermal Evaluation of Bridge-Chip Based 2.5-D Configurations

6.1.1 Bridge-Chip Based 2.5-D Configuration

Die # 1 Die # 2

Bridge-chip

Package

Heat Spreader

Air-cooled Heatsink

Figure 6.2: Bridge-chip based simulation configuration

Fig. 6.2 shows the bridge-chip based 2.5-D integration technology. Chip-to-chip in-

terconnects are routed on the bridge-chip, and fine-pitch microbumps are used to connect

the bridge-chip and the active dice. With this technology, 2.5-D heterogeneous integra-

tion of multifunctional chips can be realized. In this chapter, we focus on integration of

processor-FPGA for high-performance computing. The FPGA and the processor are placed

side-by-side on the same package with a bridge-chip underneath it.

6.1.2 Thermal Modeling Specifications

The thermal modeling framework used in this chapter is reported in [7]. The model is

based on finite volume method and developed in MATLAB. The specifications for thermal

modeling of a FPGA-processor integration are specified in Table I. The specifications in-

clude the thickness and thermal conductivity of different layers of the 2.5-D integration.
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Table 6.1: Thermal simulation parameters

Layer Conductivity (W/mK) Thickness (µm)
In-plane Through-plane

TIM 3 30
Heat spreader 400 1000

TIM 1 3 30
Chip-1 die 149 100
Chip-2 die 149 100

Bridge-chip 149 100
Underfill 3 N/A
Package 30.4 0.38 1000

Package-to-die bumps 60 70

The system is assumed to be air-cooled. The boundary conditions used are similar to the

ones in [7]. The power maps of the emulated processor and the FPGA are given in Fig. 7,

which are based on Intel Core i7 processor and Altera Stratix FPGAs [7]. The total power

of the processor and the FPGA are 74.49W and 44.8W, respectively. The package-to-die

connection is established using bumps. However, the die-to-bridge-chip connections are

high microbumps.

6.1.3 Thermal Results

Thermal Results of the Stitch-chip based 
Configurations

2018 IEEE 68th Electronic Components and Technology Conference  │  San Diego, California  │  May 29 – June 1, 2018 18

74.49 W 0 W 74.49 W 74.49 W• There are two heat coupling paths: atop 
heat spreader and stitich-chip

• From a parametric sweep of die-2 power 
from 0 W – 74.49 W, the impact of thermal 
coupling can be seen in the figures

Figure 6.3: Top view of thermal profile of each die (processor-FPGA)

Fig. 6.3 shows the thermal profiles of each die from the thermal analysis. The processor
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die and the FPGA die have a maximum temperature of 102oC and 89.5oC, respectively. As

evident from the figure, there is significant thermal coupling from the high power die to

the low power die. There are two paths associated with the thermal coupling. The primary

coupling path is the heat spreader atop. For the 2.5-D based integration case that we are

investigating, there is also a secondary heat coupling path through the bridge-chip.

Thermal Coupling with Respect to Varying Power of The Low-Power Die
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Figure 6.4: Maximum temperature of different layers with respect to the variation in low
power die power

In this section, we sweep the power of Die-2 (FPGA) from 0 W to 74.5 W. Fig. 6.4

shows the maximum temperature in each die for different power levels in the FPGA die.

The figure also shows the maximum temperature in the bridge-chip. With increased power,

there is a linear increase in the temperature at both dice. A 0 W FPGA is an emulation

of a processor-dummy die configuration. Hence, for this configuration, the temperature

distribution in the FPGA is solely due to the thermal coupling through the heat spreader and

the bridge-chip. Likewise, in the low power range, there is heat coupling from the processor

to the FPGA. However, in the high power range, the bridge-chip helps spread power in
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both directions. Especially, when both dice have similar power levels, hotspots in the die

power map will dictate the spreading of power. We can see in the figure that the maximum

temperature in the bridge-chip is rising above the temperature of Die-2 temperature after

∼70 W. Fig. 6.5 reports the package thermal profile of two different power processor-

74.49 W 0 W

(a)

Thermal Results of the Stitch-chip based 
Configurations

2018 IEEE 68th Electronic Components and Technology Conference  │  San Diego, California  │  May 29 – June 1, 2018 18

74.49 W 0 W 74.49 W 74.49 W• There are two heat coupling paths: atop 
heat spreader and stitich-chip

• From a parametric sweep of die-2 power 
from 0 W – 74.49 W, the impact of thermal 
coupling can be seen in the figures

Figure 6.5: Thermal profile of (a) 74 W processor – 44.8 W FPGA integration and (b) 74
W processor – 74 W FPGA integration

FPGA simulations. The bounding box defines the boundary of each die. The bridge-chip is

located between these two bounding boxes. We can see in the figure that, depending on the

FPGA power, there is significant thermal coupling and heat spreading in the bridge-chip.

6.2 Thermal PDN Co-Analysis for Bridge-Chip Based 2.5-D Configuration

6.2.1 Steady-state IR-drop Modeling Framework

In Fig. 6.6, we present the proposed modeling framework for steady-state analysis. We

begin thermal and PDN simulations with a reference power for each die estimated from an

architectural tool [118]. Moreover, we use HSPICE to estimate the temperature and supply

voltage dependencies of the leakage power. In the subsequent iterations, the power dissi-

pation is updated by the power models that use the updated temperature and supply voltage

values. At the end of the simulations, the power dissipation, temperature distribution, and

the supply noise of each die become consistent with each other within our interaction mod-
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Figure 6.6: The flow chart for the thermal-PDN co-analysis

els [7]. We consider two different thermal effects, as shown in the figure. First, the power

estimation of a die from an architectural tool or HSPICE simulations is temperature de-

pendent; the outer path in Fig. 6.6 accounts for this effect. Second, there is self-heating

of the PDN where temperature changes the PDN resistivity. Additionally, we included a

distributed package model in our co-analysis framework to incorporate irregular packaging

structures owing to emerging advanced packaging technologies. In our two die package,

Die #1 and Die #2 emulate a 14 nm FPGA die with peak total power of 44.8 W [102]

and a 22 nm processor die with peak total power of 74.49 W [5], respectively. We assume

uniform power map for both dice with a supply voltage of 0.9 V. Both dice are assumed

to be 1 cm × 1 cm and are placed side-by-side with a die spacing of 0.5 mm. For the

bridge-based configuration, we assume a 2.5 mm× 6 mm bridge interconnecting the dice.

The framework is implemented in MATLAB.
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6.2.2 Steady-State Thermal-PDN Co-Analysis Results

In this section, we analyze the thermal-PDN interactions of different configurations. Table

6.1 summarizes the specifications of the thermal simulations. Similar to the thermal evalua-

tion cases in the previous section of this chapter, we assume that the system uses air cooled

heat sinks and the case-to-ambient thermal conductance is 0.218 W/K. The secondary heat

path is through the PCB. We use an effective heat transfer coefficient of 311 W/m2K as the

boundary condition at this interface. The ambient temperature is assumed to be 38oC.

(a) (b)

Figure 6.7: The temperature distribution for (a) standalone model, and (b) co-analysis
model in multi-chip packages

Fig. 6.7 presents the temperature distribution from thermal-PDN co-analysis for a

multi-die package for our two die system. Fig. 6.7(a) shows the thermal results from a

standalone simulation assuming an ideal supply voltage. The maximum temperature of the

CPU and the FPGA dice is 88oC and 81.3oC, respectively. Likewise, Fig. 6.7(b) presents

the temperature distribution accounting for all the interactions between the thermal and

the PDN simulations. In this scenario, the maximum temperature of the CPU die and the

FPGA die is 78.7oC and 73.2oC, respectively. Hence, we see that the standalone thermal

simulation overestimates the maximum temperature by 11.3% and 10% for the CPU die

and the FPGA die, respectively. Fig. 6.8 presents the results for a bridge-based configura-

tion for our two die system. Since there is a silicon bridge interconnecting the dice on the

package, there are two thermal coupling pathways from the ‘hotter’ die to the ‘cooler’ die
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(a) (b)

Figure 6.8: The temperature distribution for (a) standalone model, and (b) co-analysis
model in bridge-based 2.5-D packages

(in this case, CPU die to FPGA die). However, since the heat sink is sitting atop the heat

spreader, the primary thermal coupling path remains through the heat spreader. Hence, the

temperature map is similar to the one observed for our multi-die package.
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Figure 6.9: Steady-state IR-drop comparison for different configurations

Finally, in Fig. 6.9, we summarize the steady-state IR-drop results from these two con-

figurations. The first half of the figure is the same as shown in Fig. 4.7 and is included for

clarity. As stated previously, the leakage power is dependent on both the temperature of

the die and the supply voltage. In each iteration of the analysis, we use a fitting function to

determine the effective leakage power. We assume a worst case temperature as our initial

condition (100oC). However, since the temperature is lower than the initial condition, the
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estimated leakage power decreases. Likewise, our dynamic power estimation is based on

a perfect supply voltage. When we incorporate the supply voltage fluctuations, the overall

estimated power decreases. Moreover, the resistivity of the metal layers in the PDN is tem-

perature dependent. Hence, in Fig. 6.9, we see that for both the multi-die package and the

bridge-based package, there is a significant overestimation in the standalone model. For the

multi-die package case, compared to the standalone modeling, both the CPU die and the

FPGA die overestimate the maximum IR-drop by almost 11%. For the bridge-based case,

the maximum IR-drop follows a similar trend where both dice overestimate the maximum

IR-drop by approximately 12%. However, compared to the multi-die package configura-

tion, the increase in IR-drop for the bridge-based configuration is 64% and 45% for the

CPU die and the FPGA die, respectively. This increase in IR-drop is similar to what we

observed in the standalone models.

6.2.3 Impact of Different Interaction Models and Number of Bridge-Chips

(a) (b) (c)

Figure 6.10: Different interaction models (a) standalone model, (b) thermal-leakage model,
and (c) full model

In a thermal-PDN co-analysis environment, different interaction models contribute to

the final self-consistent results. Yang et. al. [7] performed a comprehensive analysis on

this for a 3-D integration technology with memory-on-CPU configuration. Fig. 6.10 shows

three such cases. In the previous sections, we consider the standalone and full models.

Fig. 6.10(a) and Fig. 6.10(c) show these interactions. Fig. 6.10(b) shows an intermediate

model where the thermal impact on leakage power is considered. Table 6.2 summarizes the

results for these three interaction models. We observe that the dominant contributor to the
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Table 6.2: Comparison of different interaction models

Metric Full
model

Full model Vs.
standalone

Thermal-leakage
Vs. standalone

Full mode Vs.
thermal-leakage

CPU temperature
(C)

78.7 12% 10% 1.6%

FPGA
temperature (C)

73.2 11% 10% 1%

CPU power (W):
Dy-

namic/Leakage

56.4/7.5 6%/98% 0%/52% 6%/31%

FPGA power
(W): Dy-

namic/Leakage

34.7/3.8 3%/135% 0%/99% 3%/18%

overestimation of results is thermal impact on leakage power. Between the full model and

the thermal-leakage model, there is a 31% and 18% overestimation in leakage power for

the CPU die and the FPGA die, respectively. Hence, with the increase in leakage power of

a die, especially for circuits with HP models [69] will tend to overestimate the results more

than their LP counterparts.

Table 6.3: Impact of bridge-chip splitting

CPU max IR-drop (mV) FPGA max IR-drop (mV)
Standalone Co-analysis Standalone Co-analysis

Standalone 60.8 54 (11.2%) 37.3 33.2 (11%)
Single bridge-chip 102 88.9 (12.8%) 54.5 48.3 (11.4%)

Standalone 76.2 66.8 (12.4%) 44.1 39.1 (11.3%)

In Chapter 3, in order to reduce the IR-drop of a bridge-chip based configuration, we

proposed to split a bridge-chip into multiple small bridge-chips with similar aggregate area.

In this section, we use the thermal-PDN co-analysis framework to analyze such a case. Ta-

ble 6.3 summarizes the results including five smaller bridge-chips instead of a single large

bridge-chip. In the co-analysis model, the trends in PSN are similarly compared to the prior

analysis. Across different number of bridge-chips, we observe a ∼12% overestimation in

thermal and PSN results between the standalone model and the co-analysis model.
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6.3 Transient-State Thermal-PDN Co-Analysis

In this section, we analyze the thermal-PDN framework for transient Ldi
dt

response.

6.3.1 Transient-state IR-drop Co-Analysis Modeling Framework

11 11

Prior Work: Flow-Diagram for Thermal-PDN Co-

Analysis Framework (Transient)

PDN loop

Transient PDN loop

As per our knowledge, there is no such work in the literature investigating 

transient co-analysis incorporating all the interaction models and distributed 

PDN modeling

Figure 6.11: The flow chart for transient thermal-PDN co-analysis

Fig. 6.11 presents the analysis flow for transient simultaneous switching noise (SSN)

analysis. Similar to the steady-state analysis, we start with one time McPAT simulation for

reference power maps. We embed a switching activity with these power maps to calculate

the average power maps for each die under consideration. For example, for step response

based analysis, the average power is similar to the corresponding peak power of each die.

However, for pulse based excitation, the average power is calculated based on the activity

factor of the pulse and hence, the excitation is lower than the peak current excitation. The

time-scale of transient thermal response is typically in the ms regime [90] whereas the time-

scale for transient PDN is in nanoseconds. Since our PDN simulation time is ∼100 ns-200
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ns, we assume that the thermal response of the system under consideration is invariant

within this time-scale. We run one steady-state thermal framework with average power

maps to get the temperature profile of each die. Beyond this step, the analysis flow has

two explicit loops: one PDN loop for each time step and an external loop defined by the

simulation time. After the completion of this self-consistent simulation loop, we achieve

the final temperature and PDN analysis results.

6.3.2 Transient-State Co-Analysis Results
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Figure 6.12: PDN step response results for (a) standalone model, and (b) co-analysis model
in bridge-based 2.5-D packages

Fig. 6.12(a) and Fig. 6.12(b) provide the results for a bridge-chip based configuration

with aforementioned CPU and FPGA dice. This analysis shows the SSN results for step

response with 400 ps rise time. For the standalone analysis case, we observe 189 mV

and 256 mV first droop noise for the FPGA die and the CPU die, respectively. However,

from the co-analysis results, we observe that these values are over-estimated by 13.2%

and 15.3%, respectively. These results are dependent on the specific power maps under

consideration and the overlap region between the bridge-chip and the dice, as shown in

Chapter 3. However, between a standalone model and a co-analysis model, we observe

similar trends across different power maps and overlap regions.
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Prior Work: Transient Results for Input 
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• Attributed to the lower average power, the die temperature is 30% lower than the step 
response scenario

• Since the power estimation is temperature dependent, the overestimation in the initial 
model is more than the previous cases (17% compared to 12-13% in the previous cases)

Standalone model Co-analysis modelFigure 6.13: Average temperature profile for a 1 GHz on-die excitation
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Figure 6.14: PDN results for a pulse excitation for (a) standalone model, and (b) co-analysis
model in bridge-based 2.5-D packages

Step response analysis shows the worst-case current excitation scenario for an average

power map analysis. However, a more realistic on-die excitation is a high frequency pulse.

In Chapter 3, we analyzed the impact of different input pulse frequencies. Thermal-PDN

co-analysis modeling vastly depends on the temperature gradient across a die. Since the

average power map of a pulse excitation consumes less power compared to the worst-case

step response based power maps, pulse response generates lesser peak temperature than

an initial assumption of 100 oC. Fig. 6.13 presents the temperature profile for each die

under the assumed current maps and input pulse. We use a 1 GHz input pulse with 1 ns

period, 400 ps rise time, 400 ps fall time, respectively. Under these assumptions, CPU and

FPGA temperatures are 62oC and 57oC (79oC and 71oC for step response), respectively.

Attributed to the lower average power, the die temperature is 30% lower than the step
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response scenario. Fig. 7.1(a) and Fig. 7.1(b) show the SSN results for a 1 GHz pulse

excitation. For the standalone analysis case, we observe 132 mV and 171 mV first droop

noise for the FPGA die and the CPU die, respectively. However, from the co-analysis

results, we observe that these values are over-estimated by 20% and 21.2%, respectively.

Since the power estimation is temperature dependent, the over estimation in the pulse SSN

case is ∼21% compared to a 13-15% in the step response case.

6.4 Conclusions

In this chapter, we present a thermal-PDN co-analysis framework that incorporates impact

of the thermal distribution of the dice on the supply voltage and vice versa. We incorpo-

rated a distributed package PDN model into our existing co-analysis framework to analyze

different 2.5-D integration technologies. From steady-state co-analysis, we observe ap-

proximately 11% overestimation in the maximum temperature and 11-12% overestimation

of the supply voltage for each die compared to the standalone models. We also perform

thermal and transient PDN co-analysis. Our analysis shows that depending on the tem-

perature gradient of a die, the standalone model can overestimate the thermal and PDN

results by as much as ∼20%. While the standalone models can be adequate for pre-design

exploration and mostly accurate for conventional packages, the co-analysis model provides

added accuracy for 2.5-D/3-D architectures with increased power density and higher tem-

perature gradients within and between dice. The worst-case pre-analysis results can be

significantly different depending on the on-die stimulus we use. For example, a 1 GHz

on-die stimulus results in a higher temperature gradient across a die under consideration.

This leads to an overestimation of as much as 21% compared to a standalone PDN analysis.

The leakage contribution to the total power is also an important factor since temperature

gradient has the most significant impact on the leakage power of a die.
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CHAPTER 7

SUMMARY AND FUTURE WORK

In this thesis, we evaluate thermal-mechanical and thermal-power delivery network (PDN)

performance for emerging 2.5-D/3-D integration technologies.

7.1 Summary of the Presented Work

This thesis has five major contributions and are summarized below:

First, we perform a study that explores different means by which both interconnect

reliability is improved and interposer warpage is decreased for an interposer-to-board in-

tegration platform using mechanically flexible interconnects (MFIs). Central to this ex-

ploration is the design and distribution/orientation of the MFIs on the interposer. Using

Finite Element based tool ANSYS, different MFI distributions and configurations are in-

vestigated. A radially-oriented interconnect distribution in which the MFIs line up along

the contours of thermal expansion/contraction is evaluated. Furthermore, a multi-objective

genetic algorithm is employed to reduce max von-Mises stress in the MFIs and warpage in

the interposer for each MFI distribution configuration. Impact of chip size and MFI pitch

(from 400 µm to 1200 µm) on the mechanical integrity of the MFIs and interposer are also

explored.

Second, a power delivery network (PDN) modeling framework for heterogeneous 2.5-

D integration platforms is presented. The modeling framework, which includes both IR-

drop and transient analyses, is first validated using IBM power grid benchmarks and the

maximum relative errors are less than 7.3%. To evaluate both interposer and bridge-chip

based 2.5-D integration platforms, we assume an FPGA-CPU 2.5-D integrated module in

which the FPGA consumes 45 W and the CPU consumes 75 W. Modeling results show that

an interposer with dense power/ground grids and microbumps can suppress power supply
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noise (PSN) by a small margin with the requirement of high-density TSVs. For bridge-chip

based 2.5-D integration, under the assumption that the active dice above the bridge-chips

are not connected to package power/ground planes, some PDN challenges are highlighted

and modeled. Using multiple bridge chips and smaller overlap areas between the bridge-

chips and the active dice, the worst-case PSN in bridge-chip based 2.5-D integration is

minimized. Next, we analyze the impact of including a PDN in the bridge-chip. We ana-

lyze a CPU-FPGA configurtion and a stacked-memory-FPGA configuration. For the latter

configuration, although the base die suffers from high PDN noise for larger bridge-chip

overlap area, the memory dice are invariant to this parameter. Moreover, a design space

exploration of power delivery networks is performed for multi-chip 2.5-D and 3-D IC tech-

nologies. The focus of the study is the effective placement of the voltage regulator modules

(VRMs) for power supply noise (PSN) suppression. Multiple on-package VRM configura-

tions have been analyzed and compared. Additionally, 3D IC chip-on-VRM and backside-

of-the-package VRM configurations are studied. From the PSN perspective, the 3D IC

chip-on-VRM case suppresses the PSN the most even with high current density hotspots.

The thesis also studies the impact of different parameters such as VRM-chip distance on

the package, on-chip decoupling capacitor density, etc. on the PSN.

Third, we present a power delivery network (PDN) modeling framework for Fan-out

Wafer Level Packaging (FOWLP) technologies with focus on multi-die heterogeneous in-

tegration. Results are compared to conventional multi-die packaging and 3D package-on-

package technologies. Owing to the shorter interconnections enabled by thinner packages

and elimination of large C4 bumps with copper pillars, the package contributes less para-

sitics to the PDN path. Hence, the IR-drop, transient droop, and impedance are reduced

in the evaluated FOWLP technologies. The simultaneous switching noise in the evalu-

ated multi-die FOWLP configuration is more than 20% lower than its flip-chip package

counterpart. Likewise, similar improvement trends are seen for 3D stacked configurations.

Specifically, if a double sided RDL is utilized in a 3D FOWLP, PSN can be reduced by
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20% on average.

Fourth, a power delivery network (PDN) modeling framework for backside PDN con-

figurations is presented. A backside PDN configuration contains dense micro-through sil-

icon vias (µTSVs) and power/ground metal stack on the backside of the die. This ap-

proach separates the PDN from a conventional signaling network of the back-end-of-the-

line (BEOL) and improves power integrity and core utilization. We benchmark this technol-

ogy with conventional front-side BEOL PDN configurations. Owing to the lower resistivity

compared to Cu metal lines for advanced technology nodes, we use Ruthenium (Ru) based

buried power rail for PDN modeling. Our analysis shows that the steady-state IR-drop re-

duces by more than 4x in the backside PDN configuration, and a simultaneous switching

noise analysis shows a significant reduction in transient droops. The framework results

are validated with a place-and-route (P&R) based physical implementation flow. We quan-

tify the area improvement in the actual flow and observe 25%-30% improvement in the

backside PDN configuration. From PDN modeling framework, PDN results follow a trend

similar to the ones obtained from block-level P&R of the given configurations. Moreover,

we investigate the impact of package-to-die interconnect pitch, metal-insulator-metal cap

density, and input pulse on PDN performance. Additionally, we perform thermal modeling

to analyze thermal implications of a backside PDN configuration. From a thermal mod-

eling perspective, there is negligible influence from dielectric bonding layer in a backside

PDN configuration.

Fifth, we present a thermal-power delivery network (PDN) co-analysis framework to

analyze various multi-die integration schemes. In the proposed approach, we capture the

inter-dependencies between temperature distribution of the dice in a package and the supply

voltage noise. We use standalone thermal and PDN analyses as references to compare

our co-analysis results. Using a multi-die package and a bridge-based 2.5-D package case

studies, our analysis shows a 10-12% overestimation in steady-state temperature and power

supply noise. We also developed a framework to analyze the transient analysis of the
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system. From this framework, we observe as much as ∼20% overestimation in the results

compared to a standalone configuration. This is very much dependent on the activity factor

of the on-die PDN. For a 1 GHz stimulus, owing to the lower average power consumption,

we observe that the temperature can be ∼30% lower than the peak power case. This,

consequently, impacts how the standalone analysis overestimates the system performance.

7.2 Future Research Extensions

For the five different tasks performed in this thesis, each part can be extended to better

serve the scientific community.

7.2.1 Thermo-Mechanical Analysis for Emerging Technologies

The thermo-mechanical analysis can be extended to analyze a number of other emerging

technologies. One key technology is compressible micro-interconnect based heterogeneous

interconnect stitching technology [60]. Moreover, since this work is structural optimization

of interconnects, it can be applied to non-flexible interconnect optimization scenarios as

well. Fan-out wafer level packaging, 3-D stacking, etc. are a few candidates. From the

algorithm perspective, several other optimization algorithms can be explored to reduce the

run-time complexity.

7.2.2 Power Delivery Network and Thermal-PDN Co-Analysis

The PDN framework that we presented in this thesis can be extended to analyze several

other configurations. We have analyzed fan-out based packages, backside PDN config-

urations, and bridge-chip based 2.5-D configurations. These technologies are mutually

exclusive and hence, several combination of these different technologies can be analyzed

to leverage the best performance of each technology. Poppod et. al. [6] shows a combina-

tion of bridging technology and fan-out packaging technology. This can be analyzed from

power delivery perspective. Moreover, 3-D stacking of dice with backside PDN configura-
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Figure 7.1: 3-D stacking with backside PDN for (a) face-to-face bonding, and (b) fan-out
wafer level packaging based package-on-package

tion can be analyzed. Specifically, there are two different directions we can follow for this

configuration. First, we can deliver power to the top die through the signaling network of

the bottom die. Second, we can use a 3-D FOWLP configuration to deliver power using

TMVs. Fig. 7.1 presents these two cases. Thermal-PDN co-analysis can be performed for

this configuration as well.

7.2.3 PDN-Signaling Co-Analysis with Backside PDN

The backside PDN configurations analyzed in this thesis require some analysis from a sig-

naling perspective. This configuration partially separates PDN from the signaling network.

However, signaling network is farther from the I/Os. Full-wave analysis can be performed

in Ansys electromagnetic suite to characterize the behavior of such channels. Moreover,

power supply induced characteristics of such a signaling network can be characterized us-

ing HSPICE and the PDN modeling framework discussed in this thesis.

7.2.4 Impact of Emerging Heterogeneous Integration Technologies on Network-on-Chip

for Applied Machine Learning Algorithms

Emerging packaging technologies can be analyzed from an architectural perspective. The

ever-growing demand for large-scale data analytics rejuvenated the idea of near-memory

computing. There are two fundamental memory bottlenecks: limited off-chip bandwidth

and long access latency. Moreover, processors alone cannot meet the demand of these
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power hungry computations. Alternative hardwares such as Graphics Processing Unit

(GPUs) and Field Programmable Gate Arrays (FPGAs) are getting increasingly popular as

accelerator fabrics. For a scale-out architecture for deep neural network training/inference,

different packaging technologies can be benchmarked.
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and Z. Tőkei, “Modeling of via resistance for advanced technology nodes,” IEEE
Transactions on Electron Devices, vol. 64, no. 5, pp. 2306–2313, 2017, doi:10.
1109/TED.2017.2687524.

148

10.1109/TED.2017.2687524
10.1109/TED.2017.2687524


VITA

Md Obaidul Hossen was born in Chittagong, Bangladesh, in February 1989. He received

his B.S. degree in electrical and electronic engineering from Bangladesh University of En-

gineering and Technology, Bangladesh, in 2013. He is currently pursuing the Ph.D. degree

in electrical engineering at Georgia Institute of Technology, Atlanta, GA, USA.

He joined the PhD program at Georgia Tech in 2014. In August 2014, he joined Inte-

grated 3-D System Group supervised by Dr. Muhannad S. Bakir. His promary research is

in the area of 2.5-D and 3-D IC design with a focus on thermally aware power delivery net-

work design. His other research interests include network-on-chip modeling and algorithm

development.

149


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Introduction
	Current Relevant Research
	Heterogeneous Integration Technologies
	Thermo-Mechanical Reliability Analysis for Advanced Packaging Technologies
	Power Delivery Network Modeling for 2.5-D and 3-D ICs
	Thermal-PDN Co-Anaysis Modeling

	Organization of This Thesis

	Thermomechanical Analysis and Package Level Optimization of Mechanically Flexible Interconnects (MFIs) for Interposer-on-Motherboard Assembly
	MFI Orientation and Package Level Optimization for Reduced Stress and Warpage
	Simulation Specifications
	Meshing Profile
	Thermally Induced Warpage and Stress Results
	Radially Oriented MFI Distribution
	System Level Optimization Methodology

	Impact of Interposer Size on Thermo-Mechanical Reliability
	MFI Orientation (Radial) Along the Thermal Expansion/ Contraction Contour
	Impact of MFI Pitch on Warpage and Stress
	Conclusion

	Power Delivery Network Modeling for Emerging Heterogeneous Integration technologies and Design Space Exploration of Power Delivery Including Voltage Regulator Modules
	Modeling Methodology
	Board-Level PDN
	Package-Level PDN
	On-Die PDN
	PDN Analysis Formulation

	Validation
	Steady-State Results
	Transient-State Results

	PDN Evaluation of Emerging Heterogeneous Integration Platforms
	2.5-D/3-D Integration Scenarios
	Design Parameters and Specifications
	Benchmarking

	Impact of PDN in the Bridge-Chip
	PDN Schematics with Bridge-Chip PDN
	Bridge-Chip PDN Analysis for 2.5-D of CPU-FPGA Integration
	PDN Analysis for a 2.5-D Integration of Stacked Memory-FPGA Configuration

	Design Space Exploration of Power Delivery Including Voltage Regulator Modules
	Benchmark Architectures
	PDN Topology and Specifications
	DC IR-Drop Comparison of Different Benchmark Configurations
	Comparison of Transient Noise for different configurations
	Thermal Implications of Different Architectures
	Power Delivery Capabilities of Different Architectures

	Conclusion

	Benchmarking power delivery networks for Fan-out Wafer Level Packaging (FOWLP) technologies
	Modeling Framework
	Simulation Configurations
	PDN with Multiple Voltage Domain
	Analysis Type

	FOWLP Benchmarking
	Specification
	PDN Analysis Results

	Design Space Exploration of Fan-out Wafer Level Technology
	Impact of Solder Bump Distribution
	Impact of RDL Density
	Impact of Copper Pillar Pitch
	Double-sided RDL in 3-D FOWLP Technology
	Through Mold Via Distribution
	Comparison Between 3-D FOWLP, FC POP, and 3-D IC with FOWLP

	Conclusion

	Power Delivery Network (PDN) Modeling for Backside-PDN Configurations with Buried Power Rails and TSVs
	Modeling Framework and Specifications
	Simulation Configurations
	Specifications
	Adaptive Meshing

	Power Delivery Network Benchmarking
	Uniform Power Density Maps
	Hotspot Power Densities
	Physical Design Results

	Sensitivity Analysis
	Chip-to-Package Interconnection
	Impact of Input Pulse
	MIM Decoupling Cap Density
	Thermal Implications of a Backside PDN Configuration

	Conclusion

	Thermal- Power Delivery Network (PDN) Co-Analysis of 2.5-D Integration Technologies
	Thermal Evaluation of Bridge-Chip Based 2.5-D Configurations
	Bridge-Chip Based 2.5-D Configuration
	Thermal Modeling Specifications
	Thermal Results

	Thermal PDN Co-Analysis for Bridge-Chip Based 2.5-D Configuration
	Steady-state IR-drop Modeling Framework
	Steady-State Thermal-PDN Co-Analysis Results
	Impact of Different Interaction Models and Number of Bridge-Chips

	Transient-State Thermal-PDN Co-Analysis
	Transient-state IR-drop Co-Analysis Modeling Framework
	Transient-State Co-Analysis Results

	Conclusions

	Summary and Future Work
	Summary of the Presented Work
	Future Research Extensions
	Thermo-Mechanical Analysis for Emerging Technologies
	Power Delivery Network and Thermal-PDN Co-Analysis
	PDN-Signaling Co-Analysis with Backside PDN
	Impact of Emerging Heterogeneous Integration Technologies on Network-on-Chip for Applied Machine Learning Algorithms


	References
	Vita

