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SUMMARY

A novel large-scale silicon system platform with 9.6 cm

2 of active silicon in-

terposer area is demonstrated. The platform contains three interposer tiles and two

silicon bridges, and a novel self-alignment technology utilizing positive self-alignment

structures (PSAS) and a novel mechanically flexible interconnect (MFI) technology

are developed and used to align and interconnect tiles and bridges on an FR4 sub-

strate. An accurate alignment <8 µm between silicon bridges and interposer tiles

makes it possible to accommodate nanophotonics to enable a high bandwidth and

low-energy system in the future. In addition, mechanically flexible interconnects

and silicon bridges are used to provide electrical connections between interposer tiles

without having to use motherboard-level interconnects. Finally, an elastomeric bump

interposer is developed to enable the packaging of PSAS-enabled silicon systems, and

PSAS’ compatibility with a thermo-compression bonding process is demonstrated to

enable a wide range of system configurations involving interposer tiles and bridges,

including the multi-chip package configuration used with the elastomeric bump inter-

posers.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Motivation

Since the invention of transistors in 1947, integrated circuit (IC) technology has be-

come the main driver of the information revolution that continues to this day. One

main force behind the success of IC technology is the close relationship between IC

performance and number of transistors. Accordingly, the industry has followed a

trend that was famously observed by Gordon Moore, which showed that the num-

ber of transistors in a single microchip doubled every two years by scaling down the

transistor dimensions (Figure 1); the semiconductor industry is now able to fabricate

billions of transistors in a single chip as opposed to the hundreds of transistors that

were possible in the 1960s. 
 

 2 

 

Figure 1.2: Moore’s Law Data [1.6]. 

1.1. Thermal Management Challenges in High-performance ICs 

1.1.1. Increasing Power Density 

While Moore’s Law and device scaling has provided higher functionality and 

performance, increased device density has also historically resulted in increased power 

dissipation and increased operating temperature.  Chip operating temperature is a major 

determinate of semiconductor device reliability, and data shows that more than 50% of 

integrated circuit failures are related to thermal issues [1.7, 1.8].  Figure 1.3 shows 

historical data of how increasing power densities have accompanied successive 

microprocessor technology generations [1.9].  With respect to implications for on-chip 

interconnects, as temperature increases, the resistivity of interconnects increases, causing 

Figure 1: Moore’s law for the number of transistors.
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The theoretical limits of increasing the number of transistors per chip have been

explored in a seminal paper by Meindl [1]. Despite rapid advancement towards the

theoretical limits, the author speculated that the practical limits related to the cost

of decreasing the minimum feature size, increasing the chip size, and increasing the

packing e�ciency will determine the ultimate ceiling for the number of transistors

per chip.

Therefore, the growing risk and increased capital investment associated with tran-

sistor scaling have led the industry to look for ways to radically increase chip size and

packing e�ciency in parallel to scaling transistors. However, increasing chip size is not

a trivial task because chip size negatively a↵ects design complexity, time-to-market,

mask costs, and yield. In addition, the limited reticle size imposes a limit on the

maximum size of a chip.

Alternatively, multiple chips can be interconnected to form a logically single chip.

For example, multiple chips can be assembled on a single package substrate or a

printed wiring board (PWB). However, this approach is ine�cient in improving per-

formance despite the increased number of transistors because the o↵-chip interconnect

technologies, especially at the package and PWB levels, perform extremely poorly

compared to on-chip wires in terms of bandwidth density [2].

1.1.1 A Silicon Interposer

To overcome the interconnect density limitation on package substrates and PWB,

silicon interposers have been proposed. A silicon interposer is an intermediary layer

inserted between one or more chips and a package substrate, as shown in Figure 2.

It contains fine-pitched wires comparable with the metallization layers on a CMOS

IC. Therefore, fine-pitched wires are available to interconnect multiple chips that are

assembled on top. For the o↵-module I/Os, through-silicon vias (TSVs) are fabricated

inside the silicon interposer, which transfer signals from the top side, where the chips

2



are located, to the back side, where interconnections to the package substrate can be

made.

Figure 2: A figure showing a typical single interposer system.

Silicon interposers o↵er significant performance enhancement, as shown in Fig-

ure 3. As a result, the technology’s adoption has been rapid in the industry, and

many companies have already demonstrated multi-chip systems using a single silicon

interposer (Figure 4). Notable demonstrations include:

• IBM’s demonstration of 8x10Gb/s synchronous communication between chips

using the fine-pitch metallization on the interposer [3];

• Xilinx’s [4] and Altera’s [5] demonstration of complete 2.5D FPGA systems;

and

• Oracle’s demonstration of a silicon interposer technology with TSVs and flexible

I/Os [6].

However, the increase in parallelism to enable heavily cached, speculative, multi-

core and/or multithreaded architectures continues to drive demand for an increased

number of transistors [7]. Considering that interposer size, like chip size, is also

limited by the reticle size as well as the degrading yield, single-interposer solutions
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Figure 3: A comparison of wiring density on ceramic and organic package substrates
and silicon carriers [2].

are only partial solutions, and multiple-interposer solutions will eventually become

necessary.

1.1.2 Multiple Interposers

For multiple interposer systems, high-bandwidth and energy-e�cient interconnects

become ever more important. Figure 5 shows that the o↵-chip bandwidth requirement

increases as the number of cores increases [8]. In fact, Figure 6 shows that interconnect

bandwidth is the bottleneck that limits system throughput in a multicore system [9].

Moreover, Figure 7 shows that o↵-chip interconnects already represent 11.60% of the

power used by the latest generation of Intel CPUs, and this figure is expected to be

significantly higher for multiple interposer systems where the wire length would be

significantly longer.

In summary, a multiple-interposer platform with high-bandwidth, low-energy in-

terconnects for interposer-to-interposer communication is critical for future systems.

4



!"#$%"&"'$(!)*+)("'),(-./.(0120)(3$4567#(/)(*+)("'),(8---(9::.(0120)(

!"#$%&'()'*+)',-).'/010'2345)' 6,"7,&'8)'*+)',-).'((10'2345)'

Figure 4: Single interposer systems demonstrated by industry [3, 4, 5, 6].
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Figure 5: The bandwidth requirement is expected to rise as the number of cores is
increased [8].
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Figure 6: For a system with a large number of cores, the throughput is limited by
the system bandwidth [9].
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Power Breakdown for Intel Ivytown (22 nm) 

S. Rusu et al., “Ivytown: A 22nm 15-core Enterprise Xeon® Processor Family,”  
IEEE ISSCC 2014 (Presentation slides). 

Power Breakdown for Intel Ivytown (22 nm) 
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Figure 7: The amount of power used by IOs represents a significant percentage of the
total power used for a single CMOS IC. For larger systems with longer interconnects,
the power used by IOs is expected to increase significantly.
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However, research in this area is largely missing. The development of the multiple-

interposer platform, and the development of the interconnect and packaging technolo-

gies to enable such a platform, are the goals of this dissertation.

1.2 Interconnecting Multiple Interposers

Figure 8 compares two configurations for interconnecting two silicon interposers in

terms of a compound metric; the compound metric is defined as bandwidth density

(BWD) over energy-per-bit (EPB) [10]. The analysis show that the use of silicon

bridge structures is advantageous for the electrical interconnections. For optical in-

terconnections, the ability to form finer pitched waveguides on silicon bridges also

enable higher bandwidth between interposers compared to the configurations involv-

ing fibers or polymer waveguides on motherboards Figure 9.

1.2.1 Electrical Modeling Details

The energy-per-bit is calculated by assuming a stripline structure; the pitches of

stripline structures on bridges and motherboards are assumed to be 44 µm and

670 µm, respectively. The geometrical dimensions of the transmission line are used to

extract R, L, C, and G parameters. The minimum driving current is determined by

the receiver noise condition, and the total loss in the transmission line is calculated

as described in [11]. The channel data rate used for the analysis is 10Gbps.

1.2.2 Optical Modeling Details

The pitches for the silicon waveguides, motherboard-level polymer waveguides, and

optic fiber ribbon are assumed to be 10 µm, 60 µm, and 250 µm respectively. The

di↵erence in waveguide pitches are the primary cause of the performance di↵erence

between optically interconnected configurations. 10Gbps data rate and 8 WDM chan-

nels are assumed.
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Figure 8: Comparison of a compound metric (bandwidth / energy per bit) for various
multiple interposer configurations [10].
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1.3 Expected Main Contribution

The main contribution of this work is the experimental demonstration of an ultra-

large silicon interposer. The use of multiple silicon interposers mean that the available

area is not limited by the yield and reticle limits, and this allows even multiple reticle-

sized chips to be mounted and interconnected. To the best knowledge of the author,

the 9.6cm2 demonstrated in this work represents the largest silicon interposer area to

date.

1.4 Research Statement

The objective of this research is to develop a set of interconnect and packaging tech-

nologies to enable a large silicon system composed of multiple interposers (“tiles”)

and silicon bridges (“bridges”), as shown in Figure 10.
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Figure 10: A novel platform with multiple interposers.

More specifically, interconnect and packaging technologies will be developed to

enable:

1. area-array interconnection from the front side to the back side of an interposer;

2. rematable electrical interconnections between tiles;

3. accurate self-alignment between tiles and bridges to accommodate nanophoton-

ics communication; and

4. replacing of tiles and bridges after initial assembly.
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In addition to the design, fabrication, and characterization of interconnect and

package technologies, additional experiments are performed to demonstrate each tech-

nology’s versatility and compatibility with other processes.

1.5 Platform Overview

This work presents a novel large-scale silicon platform consisting of multiple-interposer

tiles, which are essentially silicon interposers assembled directly on the same printed

wiring board (PWB) (Figure 10) in a tile-like pattern. Electrical interconnections be-

tween the tiles are provided through silicon bridges, which are chips that are mounted

on top and span two or more interposer tiles. The tiles and the bridge are electrically

interconnected using mechanically flexible interconnects (MFI). In addition, the pres-

ence of silicon bridges that span the interposer tiles enables the use of other silicon

interconnect technologies (e.g. silicon nanophotonics and capacitive electrical I/Os)

for tile-to-tile communication. Positive self-alignment structures (PSAS) and inverted

pyramid pits (“pits”) passively self-align the interposer tiles with the FR4 PWB and

the interposer tiles with the silicon bridges. Interposer tiles also contain TSVs, which

form area-array interconnections to the motherboard for o↵-system I/Os.

1.5.1 Flexible Interconnects

MFIs are scalable, flexible interconnects capable of providing a large elastic and ver-

tical range of movement. MFIs can be fabricated with solder balls at the tip for

permanent assembly or with pointy tips for a low-resistance and rematable contact.

There are several key advantages to using MFIs instead of rigid interconnects such as

solder balls:

1. The height di↵erence between interposer tiles can be compensated. The sources

of height di↵erences include the silicon thickness variation and the presence of

features below the pads.
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2. Warpage resulting from thermo-mechanical stress can be reduced.

3. Reliable contacts can be made to non-uniform surfaces, such as an FR4 substrate

or a substrate that is warped due to thermo-mechanical stress.

4. Rematable interconnections enable tiles and bridges to be replaced after the

initial assembly process.

While there has been significant research progress in developing novel flexible

interconnects, many have focused on providing a lateral compliance. The work on

increasing the vertical range of movement is largely missing.

1.5.2 Alignment and Nanophotonics

While on-chip wires have lower latency and use less power than optical links at dis-

tances shorter than the size of a single chip, beyond the distance of a few chips,

aggressively scaled silicon photonic, or nanophotonic, links become significantly more

e�cient [7] (Figure 11); a novel silicon nanophotonic technology that consumed an

energy per bit (EPB) of 300fJ/bit [12] and integrated receivers with -18.9dBm sensi-

tivity at 5Gb/s for a bit error rate (BER) of 10�12 [13] has been reported.

However, a very accurate alignment between substrates is required for nanopho-

tonics because misalignment degrades performance significantly (Figure 12). For

example, a nanophotonics system using silicon-based micro-mirrors requires sub-

micron alignment accuracy to achieve less than 3dB of optical loss and a BER below

10�12 [14]. Another study that used grating couplers to improve the misalignment

tolerance still resulted in 1dB excess loss for a 2 µm misalignment [15]. Misalignment

is also known to negatively a↵ect the signal-to-noise ratio (SNR) of capacitive and

inductive coupled interconnects [16]. Accordingly, PSAS are used to align tiles and

bridges with 5 µm accuracy.

PSAS and pits aim to provide the accurate alignment needed for high-performance

nanophotonics-enabled systems; an alignment accuracy of <5 µm is targeted. At the
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Figure 11: Comparison of electrical links with nanophotonic links [7].
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Figure 12: Signal-to-noise ratio (SNR) as a function of lateral (left) misalignment
and vertical gap (right). Both electrical and optical link performances are strongly
dependent on the lateral alignment accuracy as well as the vertical gap [16].

same time, its self-alignment capability allows for a low-cost assembly without using

an accurate placement tool. In addition, it is compatible with MFIs to allow tiles and

bridges to be replaced after initial assembly.

1.6 Organization

This document is arranged as follows:

• Chapter 2: TSV technology for silicon interposers is developed. The fabrication,

testing, and process integration with a capacitive micro-machined ultrasonic

transducers (CMUT) system are included.

• Chapter 3: MFIs with 20 µm + of vertical elastic range of motion is developed.

A novel fabrication process, electrical testing, and mechanical simulation and

testing are described.

• Chapter 4: PSAS and inverted pyramid pits are developed, and their self-

alignment capabilities are characterized.

• Chapter 5: MFIs and PSAS are integrated to experimentally demonstrate a
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large silicon system with multiple interposer tiles that are electrically intercon-

nected via silicon bridges.

• Chapter 6: An elastomeric bump interposer, a component needed in packaging

PSAS-enabled systems, is fabricated and characterized *.

• Chapter 7: The PSAS technology is used sacrificially to develop an improved

flipchip bonding process. The PSAS technology’s compatibility with a thermo-

compression bonding process is demonstrated.

• Chapter 8: Future research topics are discussed.

• Chapter 9: Conclusions of the thesis and the summaries of each chapter are

outlined.

* The work presented in Chapter 6 was completed when the author was a 2011

visiting summer intern in the Photonics, Interconnects and Packaging group in Oracle

Labs in San Diego and was published in the ECTC 2012 proceedings [17] and is

reproduced as-is in this thesis as Chapter 6 with permission from Oracle.
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CHAPTER 2

THROUGH-SILICON VIAS (TSVS) FOR SILICON

INTERPOSERS

2.1 Introduction

Through-silicon vias (TSVs) (Figure 13) are batch-fabricated interconnects that en-

able area-array transfer of signals from one side of a silicon interposer to another. In

their simplest form, TSVs are via holes in a silicon substrate that are filled with a

conductive material such as copper or tungsten, and the side walls of the holes are

layered with a non-conductive material, such as silicon dioxide, to prevent electrical

conduction to the silicon body.

Conducting Material
(e.g. Copper or Tungsten)

Silicon Wafer

Passivation Layer
(e.g. Silicon Dioxide)

Figure 13: Cross-sectional diagram of a simple TSV.

Despite the simple structure of a TSV, there are a significant number of variations
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involving di↵erent materials as well as di↵erent shapes. Some examples of TSV tech-

nologies are described in [18, 19, 20, 21]. Common variables include, silicon thickness,

conductor material, and passivation material; these variables in turn a↵ect the pitch,

electrical performance, mechanical reliability, and CMOS process compatibility of the

TSV technology.

One major focus in developing TSVs has been fabricating TSVs within thinned

wafers. This is because there is a significant need for TSVs in stacking state-of-the-art

CMOS ICs, where each IC is aggressively thinned down to 50 µm or less. In turn,

many TSV fabrication technologies have taken advantage of processing technologies

that are only available in thin substrate processing [22, 23, 24, 25].

However, TSVs also have significant benefits in interposer applications, where

it is often undesirable to thin the silicon wafers to the extent to which the latest

CMOS ICs are thinned. For example, it is shown in [26] that 300-400 µm thick

silicon substrates are required for silicon interposers to be mechanically stable and

su�ciently devoid of warpage due to the CTE mismatch between silicon interposers

and package substrates. In addition, thick silicon wafers would also be required for

integrated micro-fluidics to transport coolant to and from 3D ICs mounted on top;

micro-fluidics formed inside 3D ICs have been demonstrated in [27, 28].

The ability to form TSVs in thick wafers also has benefits beyond the interposer

application, where it is challenging or impossible to use thin silicon wafers. Such lim-

itations are common in chips that contain micro-electro-mechanical systems (MEMS)

and other types of sensors and actuators. For example, the ring gyroscope developed

in [29] requires trenches that are hundreds of microns deep. Thin wafers are also more

prone to higher levels of deflection after packaging, which causes undesirable changes

in the behavior of the devices [30].

In sum, there are many applications that can benefit from being able to form

TSVs in thick wafers, including in silicon interposers. However, there is yet to be
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an e�cient method of forming TSVs in thick wafers. In this chapter, a novel TSV

technology for thick silicon substrates (500 µm+) is presented, where the “mesh”

seed layer process and the two-metal electroplating process are used to address two

common issues in forming TSVs in thick silicon wafers.

2.2 TSV Resistance and Capacitance

Resistance and capacitance are two fundamental electrical parameters of TSVs. This

section analyzes the e↵ect of TSV dimensions on resistance and capacitance.

2.2.1 Resistance

The DC resistance of a TSV can be approximated by assuming that the interconnect

has a perfectly cylindrical structure; therefore, the DC resistance (neglecting end

e↵ects and the skin e↵ect) in [⌦] can be expressed as:

R

DC

= ⇢

h

⇡r

2
[⌦] (1)

where ⇢ is the metal resistivity; h is the TSV height; and r is the TSV radius. The

resistance of TSVs as a function of the diameter for various aspect ratios is plotted

in Figure 14.

The figure shows that for a TSV with a given aspect ratio, resistance is decreased

as the substrate thickness (i.e., the TSV’s diameter) is increased.

2.2.2 Capacitance

The capacitance of a TSV is the series combination of the silicon dioxide capacitance

and the depletion capacitance. The capacitance can be expressed as:

C

TSV

=
C

ox

C

dep

C

ox

+ C

dep

[31] (2)

C

ox

=
2⇡✏

ox

h

ln( r

ox

r

metal

)
[32] (3)
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Figure 14: Resistance of a TSV as a function of the diameter (D) and the aspect
ratio (AR).

C

dep

=
2⇡✏

Si

h

ln( rmax

r

ox

)
(4)

where r
ox

is the radius of the dielectric (silicon dioxide) layer around the TSV; r
metal

is

the radius of the TSV; r
max

is the radius of the depletion region around the dielectric

layer; ✏
ox

is the electric permittivity of the dielectric material; and ✏

Si

is the electric

permittivity of silicon.

The capacitance of a TSV has a non-linear relationship with the TSV voltage

(V
TSV

) because of the metal-oxide-semiconductor (MOS) capacitor that is formed by

the TSV conductor material, the dielectric layer, and the silicon substrate. As a

result, the capacitance is dependent on V

TSV

and is divided into three operational

regions: an accumulation region, a depletion region, and an inversion/deep depletion

region (Figure 15) [32].

When V

TSV

is in the accumulation region, where the voltage is below the flat-

band (V
FB

) voltage, majority carriers are accumulated near the dielectric-substrate

interface forming an accumulation layer. As a result, the MOS capacitance can be

approximated as C
ox

, and C

dep

can be ignored.
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Figure 15: Capacitance of a TSV has a non-linear relationship with the TSV volt-
age [32].

When V

TSV

is in the depletion region, where the voltage is between the flat-band

voltage and the threshold voltage (V
T

), the majority carrier is repelled away from

the TSV, which forms a carrier-free region (“depletion region”) around the TSV.

The depletion region acts as an additional capacitor that is in series with C

ox

. The

thickness of the depletion region increases as V
TSV

increases, which in turn decreases

C

dep

, and thus, C
TSV

.

When V

TSV

is in the inversion or the deep depletion region, where the voltage

is above the threshold voltage, the low frequency behavior and the high frequency

behavior must be examined separately. At low frequencies, minority carriers begin

to be attracted towards the TSV, negating the charge of the depletion region; an

inversion layer is formed, which plays the role of the bottom electrode of the C

ox

capacitor. As a result, C
TSV

becomes C
ox

. At high frequencies, the minority carriers

are not able to respond to the changes in the depletion caused by the rapid majority
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carrier movements, which further decreases C
TSV

.

While the exact capacitance relationship with the depletion region and the deep

depletion region is complex, calculating C
ox

is simple, and it represents a good approx-

imation of the TSV capacitance in the accumulation region and the inversion region

(at low frequencies). C
ox

is plotted as a function of the diameter and the aspect ratio

in Figure 16, which shows that the capacitance increases for thicker substrates if the

aspect ratio is fixed.

H=700 µm

H=600 µm

H=500 µm

H=400 µm

H=300 µm

H=140 µm
H=120 µm
H=100 µm
H=80 µm
H=60 µm

AR is fixed for each line.
Height (i.e., substrate thickness) increases w/ Diameter

Aspect Ratio (AR) = Height / Diameter

Figure 16: Capacitance of a TSV as a function of diameter and aspect ratio.

2.2.3 Estimated Electrical Parameters

The aspect ratio targeted by the TSV technology in this chapter is 10, and it is aimed

for fabrication in 500 µm thick wafers. The estimated resistance and capacitance are

5.76 m⌦ and 1.41 pF, respectively; a copper resistivity of 2.26 ⇥10�8 ⌦ ·m, silicon

dioxide relativity of permittivity of 3.9, and silicon dioxide thickness of 2 µm are

assumed.
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Since the dimensions of the TSVs are limited by the aspect ratio, the increase

in the thickness also increases the diameter. Thus, as the dimensions increase, the

resistance decreases and the capacitance increases. However, the resistance of TSVs

is several orders of magnitude less than output resistance of driver circuits, and the

capacitance of TSVs, especially in thick substrates, can be significantly larger than

capacitances of on-chip wires. Therefore, it is primarily the capacitance of TSVs, and

not the resistance, that a↵ects the delay. To overcome TSV capacitance issue, thick

polymer dielectric layers may be used to form low-capacitance TSVs, as described in

Section 2.6.

2.3 Fabrication of TSVs in Thick Wafers

An electroplating process is the most common method of filling via holes in thick

wafers because the volume of the conducting material required is too large for other

deposition methods such as a plasma deposition or an evaporation method. To fill

the via holes using the electroplating process, it is essential to form a conductive seed

layer that suspends over the open via holes (Figure 17). In addition, it is necessary

to planarize the excess material that is over-electroplated (Figure 18) because the

electroplating process is an inherently non-uniform process in which precise control

of the deposition rate across the wafer is di�cult.

There have been several publications that describe the fabrication of TSVs in

thick wafers using the electroplating process to fill the via holes. A representative

example of such work is a TSV fabrication technique reported in [33] and described

in Figure 19. In the paper, TSVs are fabricated on a 400 µm wafer by etching the

via hole using a deep reactive-ion etching (DRIE) process, depositing a seed layer on

one of the surfaces, and electroplating until the seed layer around the circumference

of the via closes (“pinches o↵”). Since the diameter of the via hole is around 50 µm,

the resulting metal layer is also around 50 µm. Using the new bulk metal as a seed
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Silicon Wafer

Easily Removable
Seed Layer Required for 
Through-hole Filling 
via Electroplating

Blue Tape to Prevent Back-side Electroplating

Figure 17: Ideal seed layer for filling via holes via electroplating.

Silicon Wafer

Excess electroplated conductor material

Figure 18: Excess copper resulting from electroplating is non-uniform and highly
irregular. The cross-sectional image is from [34].
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layer, the via hole is then electroplated with copper. A chemical and mechanical

planarization (CMP) technique is used to planarize both sides of the wafer.

Figure 19: Conventional methods of making the seed layer for filling TSVs using
electroplating result in a thick bulk metal layer that takes a significant amount of
time to remove.

However, despite the seemingly simple process flow, the process requires several

hours of pinch-o↵ time and the time consuming removal of the thick bulk metal formed

during the pinch-o↵ process. In addition, CMP processes are required on both sides of

the wafer, which can damage existing devices on the wafer; this becomes a significant

hurdle in fabricating TSVs as the last process. The ability to fabricate TSVs as the

last process is critical as many foundries do not accept preprocessed wafers because of

contamination issues. In addition, the presence of copper TSVs may limit subsequent

processes. For example, a high temperature process may cause chips to crack because

of the mismatched CTE.

In this work, an improved method of forming and removing a seed layer for the

bottom-up plating of TSVs is developed. The process diagram for the improved TSV

process is illustrated in Figure 20 and Figure 21. The process enables the fabrication

of TSVs in thick wafers without prior thinning of the wafers. Therefore, it can be used
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in applications where wafer thinning is not an option. The technology also features

a “mesh” seed layer, to reduce pinch-o↵ time and a non-mechanical planarization

process to allow removal of the excess copper without damaging sensitive features,

such as passives on silicon interposers.

2.3.1 Novel TSV Fabrication Process using “Mesh”

The TSV fabrication process using the mesh seed layer is described in Figure 20.

The process begins by forming a SiO2 layer on top of a silicon wafer via a PECVD

or a thermal oxidation process. The layer is used as a stop layer in the subsequent

DRIE process that forms the via hole; a suspended SiO2 layer is formed upon the

completion of the etch process. It is vital that ultrasonic processes are not used from

this point until the via holes are completely filled.

Top View Side View 
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Figure 20: The “mesh” TSV fabrication process enables e�cient formation of seed
layer in large diameter TSV holes. It also allows planarization of the device side with
excess copper without using the detrimental CMP process.

A mesh pattern is etched on the suspended SiO2. Experiments show that the

thickness of the suspended SiO2 layer can range from 1 µm to 4 µm. A thinner SiO2
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layer results in breakage during subsequent processes, while a thicker layer makes it

di�cult to form the mesh pattern as the photoresist-to-SiO2 etch selectivity is low.

Experiments also show that a 3 µm mesh grid size is optimal [35]; smaller grids have

been determined to be mechanically unstable, which results in breakage. The side

wall passivation layer can be formed at this stage. A thermal oxidation process can

be used to grow a high-quality silicon dioxide layer, or a low-temperature PECVD

process can be used to enable the post-CMOS fabrication of TSVs.

A metal seed layer is deposited on top of the mesh layer. An e-beam evaporation

process is used to minimize the metal deposition inside the via hole because the

deposition of metal on the side wall at this stage can cause air to be trapped during

the electroplating process that is used to completely fill the via hole. Copper is used

as the seed metal layer in this work, however it is possible to use other materials that

can be wet etched. A short electroplating process closes the mesh holes by depositing

the metal laterally from the edges of the mesh holes. The newly formed metal is now

exposed from the inside of the via hole.

The surface of the wafer with the SiO2 mesh layer is covered using a blue tape to

prevent further electroplating on top, and another electroplating process is performed

with the SiO2 layer facing away from the electrode. The process begins filling the

via holes from the exposed metal through the mesh pattern. The fabrication results

show that the presence of the mesh oxide patterns does not create voids during the

electroplating process, as shown in Figure 22.

Two di↵erent metals are used to electroplate the via hole. The first metal is used

as a wet etch stop layer, and a 2-3 µm layer is electroplated first. Then, the second

metal fills the rest of the via hole. Using the two metals to fill the via hole allows

the seed layer to be etched chemically. In choosing the two metals, it is imperative

that the first metal is not etched in the etchant that is used to remove the seed-layer

material. In this work, nickel is used as the stop layer, and copper is used to fill the
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Figure 21: The “mesh” TSV fabrication process enables e�cient formation of seed
layer in large diameter TSV holes. It also allows planarization of the device side with
excess copper without using the detrimental CMP process.

via hole; copper etchants, including diluted sulfuric acid and APS Cu Etchant, do

not etch nickel.

After electroplating the via holes using this approach, the blue tape is removed,

and the wafer is dipped in a bath containing a copper etchant. The wafer is removed

from the bath once the seed layer removal is visually confirmed (i.e., the nickel stop

layer becomes visible). The excess copper that is electroplated on the back side of

the wafer is removed using a chemical and mechanical planarization (CMP) process.

The Cu CMP slurry from Cabot electronics and polyurethane pads are used for the

CMP process.

2.3.2 Mesh for E�cient Seed-layer Formation

The major benefit of the mesh process in this work lies in its ability to form the seed

layer for the via filling process e�ciently. Because of the small mesh hole openings,

pinch-o↵ time is significantly reduced, and the thickness of the resulting metal layer
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Mesh Mesh 
seedseed 

Figure 22: The cross-sectional image of a silicon chip containing TSVs shows that
despite using “mesh” technique, the TSVs are electroplated to completely fill the via
hole without voids.

is also reduced. The thin metal layer, in conjunction with the two-metal process

described next, can be removed quickly using a wet etch process.

2.3.3 Two-metal Process to Eliminate CMP Process

The electroplating of nickel prior to the filling of the via hole with copper enables

planarization of the mesh side of the wafer using a wet etch process. This is critical

for applications where TSVs are fabricated last, as many devices can be damaged

during the CMP process.

2.3.4 Low-Temperature Side Wall Passivation

There is a wide range of options for forming a side wall passivation layer. One

common method is thermally growing a silicon dioxide layer; however, this approach

is performed in a high temperature environment and may not be compatible with

temperature sensitive wafers, such as wafers with CMOS circuits. As a result, it

is critical to demonstrate a method of forming a side wall passivation layer using a

low-temperature process.
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In this work, silicon dioxide and/or silicon nitride layers are formed using a plasma-

enhanced chemical vapor deposition (PECVD) tool. PECVD processes, unlike ther-

mal oxidation processes, have relatively poor conformal deposition capabilities, es-

pecially in deep trenches, such as inside high-aspect-ratio TSV holes. As a result,

two PECVD deposition processes are performed from each side of the wafer. First,

2 µm of SiO2 is deposited from the back side of the wafer. It is possible to see, after

the first deposition step, that the “mesh” hole becomes smaller, which indicates that

the deposition does occur at the deepest part of the via hole. However, the hole only

becomes smaller by less than 2 µm, indicating that the deposition rate is slower at

the bottom of the via hole.

After the initial PECVD deposition, the wafer is flipped with the mesh layer facing

the top, and another 1 µm of SiO2 is deposited. The deposition through the “mesh”

side is possible because of the mesh hole openings.

2.4 Electrical Verification

2.4.1 Resistance

The resistance of a single TSV is measured using a sample with the oxide mesh and

the seed layer still intact. Two measurement configurations, as shown in Figure 23,

are used to measure the resistance of the seed layer connecting two adjacent TSVs,

and the resistance of a TSV and the seed layer between the two vias. The first

measurement is then subtracted from the second measurement to yield the resistance

of a single TSV only.

The average resistance from four randomly chosen locations for measuring the seed

layer resistance is 9 m⌦ +/-1 m⌦ . The average resistance of the same set of TSVs

with the seed layer is 17.75 m⌦ with the lowest and highest measured values being

16 m⌦ and 21 m⌦ , respectively. To approximate the resistance of a single TSV,

the two averages can be subtracted to yield a value of 8.75 m⌦ . The measured
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resistances of the TSVs include the oxide mesh, and as a result, these results reflect

more on the uniformity of the plating process than the resistance of each via.

 

Oxide mesh

I
V

I
V(b) (a) 

Figure 23: Experimental setup of TSV resistance measurement.

2.4.2 Leakage Current between TSVs

To determine the quality of the side wall passivation layer and to make sure that

the film deposited is not porous, a leakage test was performed between two adjacent

TSVs. The result is shown in Figure 24. The graph shows that the PECVD side

wall passivation method results in a nano-ampere range of leakage between two TSVs

with 200V bias. Breakdown of the passivation layer is not observed during the 0V to

200V sweep.

2.5 Capacitive Ultrasonic Micro-machined Transducers

This section describes the integration of the “mesh” TSV process with a monolithi-

cally integrated capacitive ultrasonic micro-machined transducers (CMUTs) technol-

ogy for intravascular ultrasonic (IVUS) imaging applications. The key demonstration

is the CMOS process compatibility of the TSV process that enables TSVs to be fab-

ricated post CMOS. The CMOS compatibility is relevant for interposer applications

because some applications require active silicon interposers such as the one described

in [36]. This work is performed in collaboration with Professor Degertekin’s research

group at Georgia Tech’s School of Mechanical Engineering, and the detailed work

relating to the CMUT technology is described in [37].
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Figure 24: The graph shows the leakage current between two TSVs fabricated in
blank Si wafers using the “mesh” process. TSV side walls are passivated using the
PECVD process.
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2.5.1 CMUT System Background

The IVUS system in this work includes one dual ring array for forward-looking imag-

ing and four annular ring arrays for side-looking imaging in coronary arteries. The

aim of this work is to integrate the five CMUT arrays into an IVUS catheter 1-2mm

in diameter. To achieve the small form factor needed for this application, multiple

CMUT arrays are assembled on a single flexible tape substrate, which is folded as

shown in Figure 25. 

 

 

Figure 49. A proposed flexible interconnect method for catheter integration.  The flexible 
tape in (a) is designed for forward looking and side looking arrays.  Five CMUT arrays 
and one CMOS switch circuit attached to the flex tape (b) with a fold (c) and wrap (d). 

3.5.2. Through Silicon Via Approach 

 The use of through silicon via (TSV) technology for CMUT integration had been 

previously   reported  where   the  CMUT’s  were  directly   connected   to  TSVs   for  back   side  

connection as shown previously in Figure 45.  For this configuration, extra parasitic 

capacitances are introduced between the CMUTs and electronics which can be especially 

(d) (c) 

(b) (a) 

Figure 25: One forward-looking dual ring CMUT arrays and four side-looking annular
ring CMUT arrays are assembled to a single flexible substrate that is then folded to
fit inside a 1-2mm IVUS catheter [37].
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One of the key challenges in building the IVUS system is in the assembly of in-

tegrated CMUT arrays onto the flexible substrate. The challenge is that the CMUT

arrays must face outwards for imaging, but the electrical interconnections must in-

terface with the flexible substrate from the back side of the chip. Therefore, novel

electrical interconnect structures are needed to transfer the signal from the front to

the back of the chip.

There have been two notable attempts at addressing this issue. The first approach

involves a flex tape connection (which is di↵erent from the flexible substrate) to the

front of the chip where the CMUT array is located; the tape is then passed through

the openings in the silicon to the back for connections to the electrical wires on the

flexible substrate (Figure 26). This approach requires careful micro-manipulation of

the flex tapes, which makes the process very complex and potentially unsuitable for

mass production.

The second approach involves the use of a TSV technology (Figure 27). However,

previous attempts involved the fabrication of TSVs in CMUT arrays that have not

been integrated with CMOS electronics [38]. As a result, the presence of TSVs

between the CMUT array and the electronics introduced extra parasitic capacitance,

which a↵ected the CMUT performance significantly because the CMUT’s transducer

capacitance is in the sub-picofarads range.

In this work, TSVs are fabricated in integrated CMUT arrays. Therefore, the

associated parasitic capacitance is inserted after the signal amplification and the

bu↵ering stages, which makes the impact of the parasitics negligible.

2.5.2 Fabrication

The fabrication of TSVs begins on a 0.35 µm CMOS wafer taped out from TSMC

(this work was done on a diced piece); FEOL, BEOL, and the final CMP process are

performed prior to the TSV fabrication. The inter-level dielectric (ILD) material used
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idealized in Figure 49 (a).  A forward-looking dual-ring array is integrated with side-

looking annular-ring arrays utilizing the TSV back side connections, Figure 49 (b).  With 

an additional switching circuit, the forward-looking mode of operation can toggled to a 

side-looking mode of operation to preserve the reduced cable count.  With the arrays in 

place, the flex circuitry can be folded in place around the tip of the catheter, Figure 49 (c) 

and wrapped as necessary, Figure 49 (d).  Therefore, integration development was 

expanded to include the addition of TSVs in the CMOS substrate. 

 

 
Figure 47. Two flexible tape rings designed for front side connection to FL-DRA CMOS 

electronics, (a) and (b) with bond pads for wire bonding (c). 

 
Figure 48. Doughnut shaped CMUT array with flex tape connections to the front of the 
array and passed through the silicon to the back side for connection to electrical lines. 

 

Figure 26: The previous approach involved flex tapes connected to the CMUT array
at the front and routed through holes in the silicon to the back [37].

by the manufacturer is unknown; however, experiments suggest that it can be etched

by a reactive ion etching (RIE) tool and that it has a thickness of 10 µm (Figure 28).

DRIE Etch TSV holes are patterned on the back side of the CMOS wafer piece.

A back side alignment (BSA) technique is used to align the TSV holes to the CMOS

features that are only visible from the top side. Figure 29 shows TSV holes that are

patterned on the back (unpolished) side of the CMOS piece.

Using the patterned photoresist, a DRIE tool (STS-ICP) is used to etch the silicon.

The etched holes are 50 µm in diameter and 300 µm in depth. The ILD is used as

the etch stop layer, and the holes become visible from the front side once the entire

depth of the silicon is etched (Figure 30).

Mesh Formation Forming the mesh layer on the thick ILD layer is a challenge

because of the poor selectivity between the photoresists and the ILD during the RIE

etching. As a result, a new mask material with a higher selectivity is used.

A chrome film is selected as the mask material because of its high selectivity and

its ability to be patterned using a wet etchant. The thickness of the chrome layer

required to withstand the etching of 10 µm of ILD is experimentally determined to be

500nm. However, at this thickness, chrome is opaque, and this makes it impossible
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and TSVs within a degree of flexibility.  Figure 52-right shows a fabricated DRA with 

TSV connections.  Because of the limited CMOS regions available for TSV fabrication, 

electrical connections were split between the inner electronics ring and the external bond 
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Figure 51. Second generation DRA CMOS electronics with both Tx and Rx capibilities 
and open regions for through wafer etching. 
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Figure 27: Images showing the regions used on the CMOS IC for flex tape routing
(left) and TSVs (right) [37].

to align the mesh pattern to the underlying TSV holes that are otherwise visible

through the ILD layer. Therefore, the first step is to etch the ILD (200nm only) with

the TSV hole pattern; the small step height causes the chrome layer to become visible

for alignment with the mesh patterned mask in subsequent photolithography steps.

Piranha cleaning is performed before the deposition of the chrome layer.

The chrome layer is deposited using a sputterer, but it can also be deposited

using an e-beam evaporator or other low-temperature deposition process. The mesh

photoresist layer is patterned on top of the chrome layer, and the chrome layer is

etched with a wet etchant, CR-7S. Once the mesh pattern is formed on the chrome

layer, the ILD layer is etched with an ICP RIE tool. The recipe used for the etch

process is shown in Table 1. Once the mesh pattern is etched on the 10 µm ILD layer,

the photoresist and the chrome layer are removed. Piranha cleaning is performed once
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Figure 28: SEM showing the thickness of the ILD layer in the CMOS IC.

again.

Table 1: Plasma-Therm ICP Process Parameters

Parameters Value
C4F8 15 sccm
CO2 28 sccm
Ar 5 sccm
Pressure 5 mTorr
RF1 40 Watt
RF2 800 Watt

Side Wall Passivation Despite the simplicity of forming the side wall passiva-

tion layer using a thermal oxidation process, this process is performed in a high-

temperature environment (greater than 1000 �C) and is not CMOS compatible. In

this work, PECVD is used to deposit the silicon dioxide passivation layer at 250 �C.

Due to the poor conformal deposition that is possible with a PECVD tool inside

deep trenches, the passivation layer on the side wall is deposited in multiple steps from

both sides of the sample with piranha cleaning steps in between. First, 2-3 µm of
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Figure 29: Back side of the sample showing 50 µm TSV holes patterned on NR5-
8000P photoresist.

silicon dioxide is deposited on the front side. Second, 1-2 µm of silicon dioxide is

deposited on the back side. Third, 0.5 µm of silicon nitride is deposited on the back

side. Lastly, 0.5 µm of silicon nitride is deposited on the front side. Figure 32 shows

that the mesh pattern remains open after the PECVD passivation step.

The remaining steps are performed in the same manner as described in the prior

section on the TSV fabrication. Figure 33 shows the samples after the via hole filling

processes. Chemically removing the seed-layer and the excess electroplated copper

on the front side reveals the undamaged ILD surface (Figure 35). The undamaged

ILD surface is critical for the subsequent fabrication of CMUT arrays on top.

2.5.3 Verification

The fabricated TSVs are tested electrically with no dielectric breakdown through

the substrate up to 200 V DC, which is the operating voltage of the CMUT devices

used in this work. To attain TSVs with low leakage current that is required for this

application and to compensate for the relatively lower quality dielectric layer that
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Figure 30: Microscope image from the front side of the wafer after the via holes have
been etched.

is deposited by PECVD, the overall thickness of the deposited passivation layer is

significantly increased compared to the TSVs in Figure 24. As a result, the leakage

current between TSVs has been shown to be in the nano-ampere range at a 200 V

bias, which is a su�ciently low for the CMUT system in this work (Figure 37). In

addition, this result passes the failure criteria defined in [39]; failure is defined as

having a leakage current above 1nA at 2V bias.

Figure 24 shows that a small amount of current flows (at 1pA/V) when the dielec-

tric layer is probed directly. Unchanged results after multiple measurements indicate

that breakdown of the dielectric layer is unlikely; instead, the leakage may be at-

tributed to the imperfections such as poorly covered region around the edges of the

via hole.

Finally, the testing of the CMOS electronics, measured after the TSV fabrication,

shows that the current draws of the CMOS circuits are not changed across multiple

samples. This verifies that the TSV process is compatible with CMOS processes.
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Figure 31: Mesh pattern is etched on top of the TSV hole.

2.6 Extended Work: Polymer-clad TSVs

The “mesh” TSV technology can be easily extended to form polymer-clad TSVs, as

shown in the work by Professor Bakir’s group at Georgia Tech’s School of Electrical

and Computer Engineering. This section demonstrates the versatility of the “mesh”

TSV process. A detailed description of polymer-clad TSVs is provided in [40].

Polymer-clad TSVs are TSVs with a side wall passivation layer made of a thick

polymer layer. Compared to a thin (<1 µm) silicon dioxide layer, the thick polymer

layer reduces thermo-mechanical stress. This is because the Young’s modulus of the

polymer is lower than the moduli of copper and silicon [41]. In addition, the thicker

side wall passivation layer results in a reduced dielectric capacitance and a reduced

high-frequency loss.

This work is of particular interest for silicon interposer applications because the

aspect-ratio limited TSVs in thick silicon interposers are tall. This leads to an increase

in TSV capacitance and RF losses [42, 43]. Moreover, the larger TSV diameter

increases the likelihood and severity of thermo-mechanical stress-induced reliability
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Figure 32: The mesh opening remains open after the PECVD passivation process
step.

issues, such as cohesive cracks in silicon and interfacial delamination [44], compared

to smaller TSVs in thinner substrates

The fabrication process for the polymer-clad TSVs is shown in Figure 38. The

process begins on a blank wafer with a layer of silicon dioxide. SU-8 material is

spin-coated and an optimized baking process is performed to ensure that the SU-8

material fills the etched via hole. The openings on the “mesh” oxide layer are critical

in preventing air from becoming trapped inside the via-hole during this process.

The SU-8 material that fills the via holes is photolithographically defined and

developed in an SU-8 developer solution. The exposure is performed from the “mesh”

side of the wafer because of that side’s smoother surface compared to the non-mesh

side. Following the SU-8 cladding formation, the electroplating step is performed as

described in the prior section describing the TSV fabrication. Completed polymer-

clad TSVs are shown in Figure 38.
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Figure 33: The left image shows the mesh holes after the seed layer deposition. The
right image shows the closed mesh holes after the “pinch-o↵” process.

2.7 Conclusion

A novel TSV technology for thick silicon interposers is demonstrated. The “mesh”

technique makes the seed-layer formation e�cient, and the chemical-only planariza-

tion becomes possible by electroplating with two metals. The benefits of the devel-

oped TSV process are demonstrated in two ways. First, the CMOS compatibility

of the process is demonstrated by fabricating the TSVs in TSMC 0.35 µm CMOS

ICs. Second, the versatility of the “mesh” process is demonstrated by extending the

technology to form polymer-clad TSVs.
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Figure 34: Microscope images from the back of the CMOS IC shows that TSVs are
completely filled.

Figure 35: A microscope image showing the CMOS metallization layers and com-
pleted TSVs.
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Figure 36: A microscope image showing CMUT arrays with TSVs.

Figure 37: The level of leakage current between two TSVs in a TSMC wafer as a
function of the bias voltage

44



Figure 6: Fabrication process for simultaneous fabrication of photodefined polymer-clad
and optical TSVs

described photodefinition process. The average measured copper via diameter at the top

(non-mesh) end is 81 µm with a standard deviation of 8.3 µm, and the average measured

copper via diameter at the mesh end is 63.5 µmwith a standard deviation of 3.4 µm. Further

process optimization would address this issue.

Moreover, as shown in Fig. 6, optical TSVs can be fabricated simultaneously with

polymer-clad TSVs using the same photodefinable polymer (SU-8). Since SU-8 has good

optical transmission characteristics in the window of 850 nm wavelength, and optical inter-

connects have been demonstrated using SU-8 [38], it has been selected as the core of the

optical TSVs; silicon dioxide is used as the cladding to obtain total internal reflection.

With respect to the fabrication of optical TSVs, the etched vias in silicon are filled

with SU-8, followed by SU-8 soft bake similar to the fabrication of polymer-clad TSVs.

However, during the UV exposure step for the polymer-clad TSVs, the polymer-filled vias

intended for optical TSVs are simply flood exposed. Since SU-8 is negative tone, the

polymer remains in the flood-exposed vias at the end of the SU-8 development, yielding
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Figure 7: Fabricated 390 µm tall SU-8-clad TSVs with �80 µm diameter copper vias sur-
rounded by a �20 µm thick cladding on a 250 µm pitch: a) Cross section view, b) x-ray
image showing void-free copper electroplating, c) Top view, and d) Distribution of the
obtained copper via diameters of 20 measured polymer-clad TSVs

the optical TSVs.

As shown in Fig. 8, 390 µm tall optical TSVs were fabricated with a 118 µm diameter

SU-8 core surrounded by a 2 µm thick silicon dioxide cladding.

3.2.2 Resistance and Optical Loss Measurements

Four-point resistance measurements were performed for the fabricated polymer-clad

TSVs, as shown in Fig. 9.

The average measured resistance of 20 di�erent SU-8-clad TSVs with �80 µm diameter

copper vias is 2.81 m�. Fig. 9(b) illustrates the distribution of the measured polymer-clad

TSV resistances.

As shown in Fig. 10(a), an experimental setup was established to measure the loss of
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Figure 38: Fabrication process for simultaneous fabrication of photodefined polymer-
clad and optical TSVs (left). Fabricated 390 µm tall SU-8-clad TSVs with ⇠80 µm di-
ameter copper vias surrounded by a 20 µm thick cladding on a 250 µm pitch: a) Cross
section view, b) x-ray image showing void-free copper electroplating, c) Top view, and
d) Distribution of the obtained copper via diameters of 20 measured polymer-clad
TSVs [40].
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CHAPTER 3

MECHANICALLY FLEXIBLE INTERCONNECTS (MFI)

3.1 Introduction

The concept of flexible structures as interconnects has been explored by a number

of researchers. Beginning with multiple generations of works called Compliant Wafer

Level Package (CWLP) and Sea-of-Leads (SoL) [45], these technologies initially aimed

at mitigating thermo-mechanical stress issues by providing lateral compliance and lat-

eral range-of-motion, and later works also included methods to provide a few microns

of stand-o↵ height by using aluminum as a sacrificial layer. G-Helix [46], FlexCon-

nect [47, 48] and �-Helix [49] are additional examples of compliant interconnects.

Other examples of compliant interconnects are discussed in [27].

Flexible interconnects can have significant advantages in interconnecting package

substrates, interposer tiles, and bridges over conventional interconnects such as solder

balls:

1. Flexible interconnects can be used to compensate for non-planar surfaces that

may exist (Figure 39). Sources of non-planarity could come from the warped

substrate, from buried features under the pad area, or be intrinsic to the mate-

rial, such as FR4.

Figure 39: MFIs can be used to compensate for non-uniform surfaces.
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2. Flexible interconnects can reduce the warpage that results from the CTE mis-

match between underlying substrates (Figure 40); this warpage can be signif-

icantly worse for silicon interposer applications, where the substrate sizes are

larger than conventional ICs.

Figure 40: MFIs can be used to reduce the warpage resulting from the substrates’
CTE mismatch.

3. Flexible interconnects enable the assembly of the package substrate, interposer

tiles, and bridges without using permanent interconnects such as solder balls.

This provides a simple means of replacing an individual interposer tile or a

bridge even after initial assembly. For large integrated systems, the ability to

replace defective tiles or bridges that are found after assembly can lower the

cost of ownership and increase the life time of the system (Figure 41).

Figure 41: MFIs can be used to enable rematable assembly.

4. Flexible interconnects used on the bridges can make a reliable contact with two
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tiles that may have a di↵erence in height resulting from substrate thickness

variations, misalignment, and/or features on the tiles (Figure 42).

Figure 42: MFIs can be used to compensate for varying interposer heights.

However, to take advantage of flexible interconnects for the applications described

above, the vertical deflection characteristics become increasingly important. The

vertical range of motion directly a↵ects the amount of topology variation and the

warpage that can be compensated, and the vertical compliance is critical in enabling

reliable rematable electrical interconnections. The bending profile is also critical in

ensuring that the interconnects can be deflected vertically without obstruction.

Prior studies have mostly focused on the lateral deformation of the interconnects.

Hence, the vertical deflection characteristics have not yet been studied extensively.

In fact, a flexible interconnect with an elastic range of motion exceeding 5 µm + has

not yet been demonstrated on non-stress-engineered flexible interconnects. As such,

the focus in this work is in providing a vertical elastic range of motion that exceeds

20 µm.

3.2 1st Generation of MFIs: Fabrication and Mechanical
Results

This section describes the design, fabrication, and testing of the 1st generation MFIs

(‘MFIv1’). The curved and the tapered designs are incorporated to reduce stress and

increase range of motion. The stand-o↵ height of the MFIv1 is 20 µm (Figure 47) and
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copper is used as the structural material. The fabrication results are reported, and the

MFI’s mechanical characteristics are simulated and compared with the measurements.

3.2.1 MFI Shape

The shape of a flexible interconnect is a critical design consideration because it de-

termines both the electrical and mechanical properties of the interconnect. In many

instances, however, a geometrical variable has opposing e↵ects on the mechanical and

electrical performance, and a compromise is often required. In other cases, a de-

sired geometry that could benefit both electrical and mechanical performance cannot

be attained using conventional micro-fabrication techniques. The conflict between

mechanical and electrical design requirements and the limitation of the shapes that

can be attained using conventional micro-fabrication techniques are the two most

challenging problems in the development of novel flexible interconnect technologies.

In its simplest form, a flexible interconnect has the shape shown in Figure 43;

there are three defining characteristics of such a design:

1. A beam with uniform thickness and uniform width.

2. A beam that is straight and parallel to the substrate.

3. A beam with a single support at one end.

The simple design described above is a commonly used design for many flexible

interconnects because only two electroplating process steps are needed to form a

cantilever that is both constant in thickness and parallel to the substrate, and the

single-support cantilever design produces less stress while being deformed vertically

compared to a design with multiple supports.

However, the design has two critical issues. First, the maximum stress occurs in a

very concentrated area near the support region, which can cause plastic deformation

and/or a failure. Second, additional structures are required at the tip to increase the
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Figure 43: A simple beam with a single support at one end and force applied at the
tip.

vertical range of motion. Figure 44 illustrates the problem associated with the simple

flexible interconnect design.

Simple Cantilever
w/o Solder

Vertical Deflection
Not Possible

Vertical Deflection 
Limited By

Solder Height

Simple Cantilever
w/ Solder

Vertical Range of Motion
Depends on

Rate of “Tip Rolling”  AND
Tip Angle

Curved Design
w/o Solder

Vertical Range of Motion
Depends on 

Rate of “Tip Rolling” AND
Solder Height

Curved Design
w/ Solder

Figure 44: Conventional cantilevers have a limited vertical movement while curved
cantilevers have the potential to increase the range of movement significantly.

Both issues can be addressed by modifying the geometry of the flexible intercon-

nects. Two design features used by MFIs to address both issues are: the curved

design and the tapering design. Each design is described in the sections below.
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3.2.1.1 Curved Design

The simple cantilever design has a limited range of motion if it is used as an inter-

connect. This is because the tip is at the same height as the rest of the structure,

and therefore the top substrate makes simultaneous contact with the entire flexible

interconnect, including the tip.

This problem can be overcome by fabricating an extruding structure at the tip

such as a solder ball or a copper pillar. However, the range of motion is still equal

to the height of the structure on the tip and is independent of the stand-o↵ height

of the flexible interconnect. Also, additional photolithography steps are required to

fabricate the solder ball or other structures on the tip.

A curved cantilever, as shown in Figure 44, addresses this issue. Even without a

structure on the tip, the curved design has the potential to significantly increase the

vertical range of motion over the simple design because the tip is initially higher than

the rest of the interconnect structure, and the rest of the structure moves down as

the tip is deflected downwards. Consequently, the range of motion is now determined

by the initial curvature and the bending profile of the flexible interconnect.

3.2.1.2 Tapering Design

The maximum stress experienced by the structure during a deflection is an important

consideration because this maximum stress determines the interconnect’s elastic ver-

tical range of motion. The elastic deformation is desirable as the plastic deformation

of the flexible interconnect structure can negatively a↵ect reliability. In the worst

case scenario, it can also cause a catastrophic failure if the stress level exceeds the

ultimate stress of the material. For rematable interconnect applications, the elastic

deformation ensures that the flexible interconnect returns to its original position af-

ter a vertical deflection, which ensures that the tip of the flexible interconnect makes

contact with the pads in subsequent assembly processes.
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FEM studies and classical beam theory show that beam length, width, and thick-

ness are the primary variables that a↵ect the stress. Euler-Bernoulli classical beam

theory shows that the bending stress of a symmetric rectangular beam at position x

can be simplified and expressed as

↵(x) =
M(x) · c

I

x

(5)

where x is the distance from the tip end, M(x) is the bending moment at distance x,

c is the distance from the neutral axis to the beam surface, and I is the moment of

inertia of the beam cross-section [50].

Since the thickness is uniform, c is half of h, and for a cantilever with a single

fixed point and force applied to the tip end, as shown in Figure 43, (5) simplifies to

↵(x) =
6P (L� x)

wt

2
(6)

where L is the length of the beam.

Eq. 6 shows that if the width of the beam is constant, stress will vary throughout

the beam as a function of x. The maximum stress is concentrated close to the fixed

end (when x=0) and decreases toward the tip end (when x=K). Therefore, a constant

width beam spreads the stress ine�ciently.

There are two ways to distribute the stress more evenly. Either the thickness of

the beam can be varied as a function of x, or the width of the beam can be varied as

a function of x. Varying the width is the preferred method because the fabrication of

a cantilever with a varying thickness is extremely challenging using micro-fabrication

processes.

If the width of the beam is tapered linearly, Eq. (6) can be rewritten as shown
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below:

w = C1 · (L� x) (7)

↵(x) =
6P

C1t
2

(8)

= constant (9)

The resulting stress equation shows that the stress is constant throughout the

length of the entire beam.

The tapered design and the straight design are modeled using the ANSYS finite

element modeling (FEM) software and compared. The structures are modeled as an

elastic material and constraints are applied identically to both structures.

When the tips of the two structures are displaced downwards by an identical

amount (free in 2 lateral DOFs), the simulation results show that the tapered design

has a lower maximum stress (Figure 45) compared to the straight design, and the

stress is more equally distributed. As a result, the tapered design is capable of a larger

vertical deflection compared to the straight design, which is otherwise identical.

Figure 45: ANSYS FEM simulation showing that tapered design can be used to
reduce the maximum stress experienced by the beam while deforming.

3.2.2 Fabrication of Curved MFIs

3.2.2.1 Process Overview

The fabrication of MFIs begins with a blank silicon wafer, although the process can

be performed on any polished and planarized surface with devices or materials that
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can withstand up to 30 minutes of total baking time at 200 �C or less. This also

implies that the process is CMOS compatible. An overview of the process is shown

in Figure 46. The resulting MFI structures are shown in Figure 47, and an array

of MFIs fabricated using this process are shown in Figure 48. Subsequent sections

describe key fabrication issues in detail.

Figure 46: Fabrication process for MFIs with confined solder balls.

On the planar surface, a layer of Novolac-DNQ positive photoresist is spin coated,

exposed, and developed. The resulting photoresist structure is reflowed and baked to

form a curved surface (Figure 49). The baking procedure ensures that the photoresist

structure does not reflow in subsequent processes and can still be removed chemically.

The challenges in reflowing the photoresist are discussed in Section 3.2.2.2. A single

layer of photoresist forms a curved surface with a height of approximately 20 µm at

the center; the same process can be extended to form a taller curved surface using a
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Figure 47: SEM image taken from the sides showing Cu MFIs with 20 µm gaps and
the MFI’s curved cantilever structure.

Figure 48: SEM (left) and optical microscope (right) images showing batch fabricated
area array of MFIs.
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double and a triple spin-coated layers, as shown in Figure 50.

Figure 49: SEM (above) and optical microscope (below) images showing the pat-
terned photoresist before and after the reflow.

An electroplating seed layer consisting of titanium, copper, and titanium (30nm

/ 300nm / 30nm) layers are deposited on top of the curved structures and the ex-

posed substrate. A DC sputterer or an e-beam evaporation tool can be used for the

deposition process.

A thick negative photoresist is spin coated on top of the seed layer to form an

electroplating mold. The mold forms the tapered shape of the MFI. A bu↵ered oxide

etch (BOE) is used to remove the Ti layer under the mold openings, and copper or

nickel tungsten is electroplated. The negative photoresist is then removed in acetone.

The reflowed photoresist under the seed layer is una↵ected by the acetone solution
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(a)

(b) (c)

(d) (e)

Figure 8. Fabrication issues caused by non-uniform solvent
evaporation (a) are: (b) polymer dome leakage, (c) seed layer
cracking, (d) MFIs lead break, and (e) electroplating mask cracking.

(a)

(b) (c)

Figure 9. A proper exposure can be conducted on the conformal
spray-coated photoresist layer (a). After the development, clear
pattern can be obtained both on the top of the domes (b) and in the
valley between the domes (c).

polymer dome in the high temperature soft bake process step
makes the dome prone to be distorted. Consequently, the seed
layer covering the polymer dome can be broken, which leads
to photoresist leakage at the dome edge (figure 8(b)) and
seed layer cracking on the top of the dome (figure 8(c)). The
photoresist leakage will prevent the subsequent electroplating
process and yield broken MFIs, as shown in figure 8(d).
Moreover, the photoresist plating mold cracking can also
be induced by the non-uniform evaporation, as shown in
figure 8(e).

(a)

(b)

Figure 10. The solvent evaporation of a spray coated sample is
uniform and no high temperature soft baking process needed
(a) which yields to MFIs consistent to design geometry on the dome
surface with no cracks (b).

(a)

(b)

Figure 11. Overall view (a) and side view (b) of free standing MFIs
array on 150, 75 and 50 µm pitch with 65 µm vertical gap.

Using spray coating, a uniform and conformal photoresist
film can be formed across the wafer and thus eliminated
the two challenges introduced by spin-coating. As shown in

5

Figure 50: Double and triple coating of the photoresist can produce MFIs with
65 µm stand o↵ height. The extended work is published in [51].

because of the seed layer that completely covers the structures. The challenges asso-

ciated with forming the electroplating mold are described in Section 3.2.2.3.

To form solder balls on the tip of the MFIs, additional processes are required. To

form solder balls, an SU-8 layer is spin coated, and a polymer dam is patterned and

developed. Next, a layer of thick negative photoresist is spin coated, and only the area

inside the polymer dam is patterned and developed away. 1-2 µm of nickel and 20-

30 µm of solder are electroplated. The negative photoresist is removed using acetone.

A detailed description of the solder ball fabrication is described in Section 3.2.2.5.

For both versions of MFIs with and without solder, the seed layer is removed

using a BOE solution and a copper etchant. The reflowed photoresist is removed in

an acetone bath and in a heated resist remover solution. The removal of the seed

layer and the reflowed photoresist releases the electroplated MFI structures.

3.2.2.2 Sacrificial Reflowed Photoresist

Sacrificial reflowed photoresist (Novolac based) structures are critical in fabricating

MFIs because they enable the curved surface described in the previous section. In

addition, they enable 20 µm, and up to 60 µm with multiple spin coating, of vertical
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gap using only two masking steps and a single electroplating step.

Even though reflowed photoresist structures have been widely used in microelec-

tronics to form micro-lens structures, their use as a sacrificial layer and at the dimen-

sion required by MFIs is a first. As a result, the technique has many novel challenges

yet to be addressed. These challenges are described in the sections below.

Complete Reflow without Deviation The first challenge is in determining the

reflow and baking temperatures. Initially, a constant temperature on a hotplate was

used, which yielded unsatisfactory results. At a lower temperature (130 �C), but still

above the glass transition temperature (Tg), the reflow process stops prematurely,

leaving a partially reflowed photoresist structure (Figure 51). It is suspected that

this is because the Tg is raised above the baking temperature before the material has

had a chance to reflow completely.

Figure 51: The profilometer result shows that the photoresist is partially reflowed at
lower temperatures.

At a higher temperature (160 �C), the reflow is complete. However, the base of

the resulting structure deviates from the pattern on the mask. In extreme cases,
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the reflowed structures merged with adjacent structures as shown in Figure 52. The

deviation is shown to be anisotropic. The deviation occurs because the photoresist is

in a highly glassy state at high temperatures [52].

Figure 52: Reflowing at a constant high temperature results in final a shape that
deviates from the original patterned shape. The optical microscope image on the
right shows that despite having the same spacing in both of the lateral directions,
the photoresist merged in only one direction, indicating that the flow is laterally
anisotropic and needs to be minimized.

Hence, what is needed is a reflow and baking process that can completely reflow

the photoresist and yet minimize deviation. However, experiments showed that an

optimal temperature does not exist for a constant-temperature process; all temper-

atures (in 2 �C increments) between 130 �C and 160 �C either produced a partially
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reflowed structure or a structure that had a visibly large deviation from the mask

pattern.

The problem is resolved by using a reflow temperature profile that increases over

time. The reflowed structures using a ramped temperature profile are shown to be

completely reflowed and to have a significantly reduced amount of deviation, as shown

in Figure 53. While the exact mechanism of the process is unknown, the following

are observed:

Figure 53: Comparison of the isothermal reflow process (left) and the ramped reflow
process (right).

1. The di↵erence between the bake temperature and the glass transition temper-

ature (Tg) is inversely correlated to the viscosity of the glassy photoresist, and

60



a lower viscosity of the photoresist can be observed at a higher temperature.

2. The Tg is increased during the bake process. However, the resulting Tg does

not increase significantly beyond the bake temperature. This is observed exper-

imentally when a partially reflowed photoresist at 130 �C can be reflowed again

at a slightly elevated temperature of 135 �C. A similar material that displays

the same phenomena is described in [53].

One plausible explanation for the mechanism of the process is that by ramping

up the temperature slowly, the baking temperature “follows” the increasing Tg of

the photoresist material. In other words, the baking temperature is constantly raised

above the Tg, however, the di↵erence between the two temperatures is always mini-

mized as the Tg is also raised simultaneously. This results in photoresist structures

that are in a highly viscous glassy state throughout the entire reflow process, which

in turn minimizes the deviation.

Outgassing and Reflow in Subsequent Processes The second challenge arises

during the subsequent processes where multiple photolithography and deposition pro-

cesses are performed on top of the reflowed photoresist structures. Many of these pro-

cesses require a baking process (e.g. pre- and post-bake), which causes the reflowed

photoresist structure to reflow once more and/or produce outgassing (Figure 54).

Both challenges must be eliminated because they damage the metal seed layer that

is deposited on top.

To determine the additional baking process required to eliminate both e↵ects in

subsequent processes, a thermogravimetric analysis (TGA) is performed. A tempera-

ture of 180 �C is selected as the TGA temperature as the subsequent processing steps

involve the 150 �C baking processes. By performing the isothermal TGA at 180 �C,

the baking time needed to eliminate the solvent evaporation and decomposition at a
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Figure 54: Damaged electroplating seed layer due to the outgassing (left) and the
reflow (right).

temperature of 180 �C or less can be determined. The result of an isothermal TGA

at 180 �C is shown in Figure 55.

The result shows that less than 5 minutes of baking at 180 �C is required for the

photoresist to reach a stable weight. An experiment with the reflowed structure and

the seed layer also shows that a baking duration of 5 minutes or longer at 180 �C is

indeed su�cient to eliminate the breakage in seed layer due to outgassing. However,

the warpage caused by the reflow is still not eliminated.

To eliminate the warpage due to the reflow, it is essential to raise the Tg of the

photoresist to a temperature higher than 150 �C. A di↵erential scanning calorimetry

(DSC) analysis is performed to determine the length of the bake process required.

The reflowed photoresist is divided into two samples, and the two samples are baked

for 5 minutes and 10 minutes, respectively, at 180 �C. The photoresists from the two

samples are then collected into two DSC containers, and the same DSC is performed

on both samples. The DSC result for the 5-minute sample is inconclusive, but the

10-minute sample shows a clear increase in the Tg to 150 �C(Figure 56). A similar

DSC result has been reported for other Novolac-epoxy systems, where the Tg of the

resin is increased after an isothermal baking process [54]. Subsequent experimental
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Figure 55: Isothermal Thermo-Gravimetric Analysis (TGA) performed at 180 �C.

verification shows that 10 minutes of baking at 180 �C after the ramped reflow process

is su�cient to eliminate both the outgassing and the reflow e↵ect.

3.2.2.3 Electroplating Mold Exposure Control

The need to spin-coat, pattern, and develop a thick negative photoresist on top of

a reflowed photoresist is a significant challenge because of the large variation in the

surface topology. The large variation produces regions where the thickness di↵erence

is as much as the height of the underlying reflowed structure (20 µm for a single

spin-coated structure and 60+ µm for a triple spin-coated structure).

The varying photoresist thickness is a challenge because the required exposure

dose varies with the thickness. It becomes impossible to have optimal exposure at

all areas of the sample; if the optimal dosage for the thinnest region is used, the

thickest regions will have an insu�cient amount of exposure causing undercutting of

the electroplating mold during the development process (Figure 57). On the other

hand, if the exposure dose is increased to give the optimal dose to the thickest region,

the resist on the curved region would not develop because the reflection of the light
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Figure 56: After curing the photoresist at 180 �C for 10 minutes, Di↵erential Scan-
ning Calorimetry (DSC) results show that the Tg has been raised above 150 �C.

on the curved region of the dome results in an inadvertent exposure of the masked

(i.e., unexposed) region.

Figure 57: SEM images showing the result of electroplating with a mold that has an
undercut.

After experimenting with various thick resists, a negative resist with a very wide

sensitivity range is identified (Futurrex NR21-20000P). For the photoresist layer where

the thickest region is 40 µm (with an optimal dose of 2200mJ) and the thinnest region

is 20 µm (with an optimal dose of 920mJ), a dose of 1200mJ and a doubled post-

exposure bake (PEB) time are used successfully.
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3.2.2.4 Spray Coating

In an extended work by Professor Bakir’s Research Group at Georgia Tech, the elec-

troplating mold is produced using a spray-coating process instead of a spin-coating

process [51]. The spray coating enables a photoresist layer with uniform thickness

to be coated regardless of the surface topology. Figure 58 shows the two photore-

sist layers: one produced by the spin-coating process and another produced by the

spray-coating process.

20!m 20!m 

Photoresist 

Spin coated photoresist on seed 
layer covered sacrificial dome 

Spray coated photoresist on seed 
layer covered sacrificial dome 

Seed layer 

Polymer Dome 

Figure 58: Cross-sectional SEM image shows that a more uniform photoresist layer
is produced by the spray coating process compared to the spin coating process [51].

The spray coating enables the development of higher fidelity patterns on highly

non-uniform surfaces, including the tops of curved surfaces with 60 µm heights. Fig-

ures 59 and 60 show the enhanced fidelity achieved using the spray-coating process

compared to the spin-coating process.

3.2.2.5 Polymer Dome / Solder

As discussed in the previous section, additional processing steps are required to form

solder balls on the tip of the MFIs. First, an SU-8 ring is formed around the pad area,

and nickel and solder are electroplated inside the ring. The purpose of the SU-8 ring

is to confine the solder during the reflow process and during the thermo-compression

assembly process. The polymer dam is shown in Figure 61.
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Figure 59: Optimization of the exposure dose is di�cult with the spin coating pro-
cess [51].

Figure 60: High fidelity patterning can be achieved with the spray coating pro-
cess [51].
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Figure 61: Electrodeposition of solder inside a polymer ring allows confinement of
solder in MFIs.

After the assembly of the chips containing MFIs with solder balls with 2N of force,

the top chip is removed and MFIs and the solder balls are examined under an SEM.

The images show that solder balls are completely confined to the pad area even after

the thermo-compression assembly process (Figure 62).

3.2.3 Mechanical Compliance FEM and Measurement

Compliance (the inverse of sti↵ness) is an important metric for flexible interconnects

because it determines the force applied to pads during the assembly process. It is

measured using a Hysitron Triboindenter, which can apply a vertical force on the tip

area of the MFI and collect the force vs. displacement data. From this data, the

slope is measured from the linear region, which corresponds to the compliance.

The compliance of MFIs with various thicknesses is measured and compared to the

ANSYS FEM simulation results. Figure 63 shows the experiment setup, and Figure 64

shows the compliance as determined by the simulation and the indentation.
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Figure 62: SEM image of the assembled MFIs after the substrate has been pulled o↵.
The solder is confined using the SU8 ring and remains confined even after assembly.

Figure 63: Mechanical characterization setup using the nano-indenter to measure
the vertical compliance of MFIs.

68



Figure 64: Simulation and indentation results showing the MFI’s compliance as a
function of thickness.

It is important to note that a wide range of compliance can be obtained just by

varying the thicknesses of the MFIs. This is important because varying the thickness

is a trivial process, since only the electroplating time needs to be changed. As a result,

the compliance of the MFIs can be tailored to meet the requirements of various appli-

cations. For example, MFIs on a low-k surface might require a high compliance, while

rematable interconnects require a relatively low compliance to ensure that su�cient

force is applied to form low-resistance interconnections. The required compliance may

also vary depending on the number and density of MFIs used in the application. For

example, having the ability to change the compliance of individual MFIs allows one

to achieve a predetermined spring constant between two substrates without adjusting

the number of MFIs.

3.2.4 Elastic Range of Movement

A single MFI is indented twenty times to determine if plastic deformations have

occurred. The tip is vertically displaced by 4.5 µm, and the force vs. displacement
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data is collected. The results show that the first and the twentieth indentations have a

linear force vs. displacement relationship, and the slope of the first and the twentieth

indentations is almost identical. This indicates that the MFI experiences only a small

amount of plastic deformation when vertically deflected up to 4.5 µm. The graph in

Figure 65 also shows that the loading and the unloading profiles are closely matched,

which confirms that little, if any, plastic deformation has occurred. The indentation

is limited to 4.5 µm by the tool used in this experiment.
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Figure 65: Loading and unloading profiles of an MFI.

To characterize the deformation beyond 4.5 µm, a high-force indenter is used to

press on the tip of the MFI. The tip is pressed all the way so that the tip area

makes contact with the substrate (Figure 67). The resulting structures are examined

under an SEM. The captured images show that the MFI’s stand-o↵ height remains

unchanged at 20 µm even after the full deformation, which again indicates a small

amount of plastic deformation (Figure 68).
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Figure 66: Top graph shows the force vs. displacement graph of the first indentation
and the bottom shows after 20 indentations of the same MFI. Graph’s linear and
unchanged slope shows that minimal plastic deformation has occurred.
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Figure 67: Indentation using high force head flattens the pad area flat against the
substrate.

Figure 68: Even after the indenter presses the pad area flat against the substrate,
the MFIs are returned to their original positions as shown in the SEM(right).
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3.3 2nd Generation of MFIs: Rematable Tip, Mechanical,
Electrical Results

This section describes the design, fabrication, and testing of the 2nd generation of

MFIs (“MFIv2”). The fabrication process is slightly modified from the MFIv1’s

process; the modifications are made to 1) increase the stand-o↵ height to 60 µm (Fig-

ure 47); 2) use nickel-tungsten, a material with a significantly higher tensile stress

(1.9 GPa) than copper, as the structural material; and 3) to further optimize the

shape in order to increase the elastic range of movement beyond 20 µm and enable

rematable interconnections.

3.3.1 MFI Shape

For MFIv1, the tapered shape is used to equally distribute the stress and reduce the

maximum stress. However, the tapered design has a serious side e↵ect that limits the

range of motion to what is demonstrated by MFIv1 (20 µm or the height of solder

ball); the bending profile of a tapered MFI shows that the tip “rolls” during a vertical

deflection, and the tip is eventually at the same height as the body parts of the MFI

before the tip is completely deflected vertically. For MFIv1, the presence of solder

balls at the tip ameliorated the problem, however, for MFIv2, where the stand-o↵

height is significantly increased and the solder balls are not present (for rematable

interconnections), the “rolling” e↵ect must be minimized.

The rolling e↵ect can be seen from classical beam theory. The bending profiles (or

elastic curves) for the tapered, reverse-tapered, and straight cantilevers are derived

in Appendix A.

3.3.2 Comparison of Designs

The derived bending profile formulas are plotted in Figure 69. It can be seen that the

tapered design reaches a predefined slope at a much lower level of deflection compared

to the straight or reverse-tapered tips. This means that the tapered design is much
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more prone to rolling of the tip. In fact, the results suggest that the reverse taper

has the optimal bending profile for flexible interconnect applications.
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Figure 69: Test setup for four point probing resistances including contact resistance.
The chip is mounted using PSAS to ensure consistent contact force.

Similar results can be seen from FEM simulations, where the initial stand-o↵

height and the curved profile are taken into consideration (Figure 70). It is shown

again that the tapered tip reaches a prescribed angle (i.e., becomes flat) before the

straight design and MFIv2 design, which incorporates the reverse-taper design.

However, while the reverse taper design has the optimal bending profile, the stress

resulting from its deflection is the highest of the three designs. What is needed is the

stress profile of a tapered design and the bending profile of a reverse-tapered design.

As a result, a new design (“MFIv2”) that incorporates both the tapering design as

well as the reverse-tapering design is developed. The stress distribution of the new

design is compared with the tapered and the straight designs (Figure 71).

The MFIv2 design provides over 33% increase in the range of motion compared

to the tapered shape and over 17% increase compared to the straight design. The

FEM also shows that MFIv2 design moves laterally as it deforms. Such movement is

beneficial for the rematable interfacing as it “scratches” the pads to potentially break
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Figure 70: Bending profiles of constant-width, tapered, and t-MFI designs for varying
stand-o↵ heights (20 µm, 40 µm, and 60 µm).
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Figure 71: FEM simulated MFIs and corresponding stresses during 20 µm vertical
deformation. Constant-width, tapered, and T-MFI designs are shown.
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through the oxide layer and form a better electrical contact.

3.3.3 Pointy Tip Fabrication

Pointy tips are required to make a low contact resistance interface with pads. To

form pointy tips, a non-flat angle of the curved surface is used, as shown in Figure 72.

This configuration also decreases the pitch, as two MFIs can be formed on the same

area needed to form a single MFIv1. Fabricated MFIs are shown in Figure 73.

Figure 72: MFIs point upwards by not utilizing the flat region. It is also possible to
increase pitch by using both sides of the sacrificial photoresist.

3.3.4 Electrical Results

A four point resistance measurement of a single MFIv2 (without contact resistance)

is performed by directly probing an MFI on a four point probe station. In addition,

the resistance, including contact resistance, is also measured using the setup shown in

Figure 74. The resistance of a single MFIv2 is 48 m⌦ , and the resistance including

the contact resistance on a pad coated with gold is 58 m⌦ . The resistance including

the contact resistance on an aluminum pad without a gold layer is 298 m⌦ ; the

higher contact resistance may be caused by the native oxide that is formed on the

aluminum pads.
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Figure 73: SEM of MFIs show pointy tip end of the structure.

3.4 Conclusion

A novel flexible interconnect technology called mechanically flexible interconnects

(MFIs) is developed. The first generation of MFIs (“MFIv1”) has a stand-o↵ height

of 20 µm and incorporates the tapered and the curved designs to increase the vertical

elastic range of movement; a novel sacrificial reflowed photoresist process is developed

to enable the fabrication of curved MFIs, and the benefit of the tapered design is

analyzed. Mechanical FEM simulations and measurements are performed to verify

that only a small amount of plastic deformation is experienced by MFIv1 when it is

deflected 20 µm vertically. The fabrication process to form and confine solder balls

at the tips of MFIs are also developed.

The second generation of MFIs (“MFIv2”) has a stand-o↵ height that is greater

than 60 µm and incorporates both the reverse-tapered and the tapered design. The

reverse-tapered region of the design produces a bending profile that allows the MFI’s

vertical range of motion to be increased significantly, while the tapered region of the

design reduces the maximum stress to minimize plastic deformation. The pitch is
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Figure 74: Test setup for four point probing resistances including contact resistance.
The chip is mounted using PSAS to ensure consistent contact force.

doubled by forming MFIs on both sides of the curved surface, and pointy tips are

produced by avoiding the flat region at the top of the sacrificial photoresist. The

resistance of a single MFIv2, including the contact resistance with the pointy tip, is

measured.
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CHAPTER 4

POSITIVE SELF-ALIGNMENT STRUCTURES AND

INVERTED PYRAMID PITS

4.1 Introduction

An accurate alignment is critical for the performance of interconnects between two

substrates, so misalignment must be minimized. This chapter begins by outlining

the e↵ect of misalignment on the performance of electrical and optical interconnects

between substrates. Then, a novel self-alignment technology utilizing positive self-

alignment structures (PSAS) and inverted pyramid pits (“pits”) is introduced and

experimentally demonstrated.

4.1.1 E↵ect of Misalignment on Pitch

Typically, alignment accuracy between two vertically stacked substrates limits the

minimum pitch of interconnects. However, there are also other factors that may

a↵ect the pitch. For electrical interconnects, the size of the solder bumps typically

limits the pitch, not the wires; and for nanophotonics, the size of the optical devices

and fibers limit the pitch, not the waveguide dimensions. However, these limits are

not fundamental limits; there are significant e↵orts to reduce the electrical I/O pitch

as demonstrated in sub-10 µm bumps [55, 56], and there are also e↵orts to reduce the

size of the nanophotonic devices, such as micro-ring modulators [57, 58]. As these

limiting technologies continue to scale, it becomes increasingly important to improve

alignment accuracy.
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4.1.2 E↵ect of Misalignment on Bandwidth

The pitch of the interconnects directly a↵ect the bandwidth density, as is evident

from the definitions of bandwidth density (�) given for electrical and nanophotonic

I/Os below.

�

optical

=
kB

p

(10)

�

electrical

=
B

p

(11)

where k is the number of wavelength-division multiplexing channels; B is the bit rate

for a single wire or a waveguide; and p is the wire or the waveguide pitch.

For nanophotonic waveguides, the minimum pitch is also governed by the cross-

talk. For a given length of a waveguide (z ), the minimum pitch required to keep the

cross-talk above 3dB is given by [58, 59]:

p = 0.12log
e

�56.6z
⇡

�
(12)

Thus, the bandwidth potential may not fully utilized if the pitch is increased

beyond this limit due to the limitations of the alignment technology. Figure 75 shows

that the bandwidth can theoretically be increased by 617% (from 31.25 Gbps· µm to

200 Gbps·µm) if the misalignment is reduced from 5 µm to 0.5 µm (i.e. 10 µm pitch

to 1 µm pitch); the theoretical system described in [58] is assumed to have 25 WDM

channels, a bit rate of 12.5 Gbps, waveguide dimensions of 250 nm x 450 nm, and a

waveguide length of 4 mm; however, a similar trend can be observed for state-of-the-

art systems that have a less number of WDM channels.

4.1.3 E↵ect of Misalignment on Coupling E�ciency of I/Os

Alignment accuracy can also directly a↵ect the coupling e�ciency of the I/Os such

as proximity I/Os (Figure 76) that link two substrates (Figure 77) in a stack. For

example, the coupling loss in the proximity optical communication technology (Fig-

ure 78) is shown to be extremely sensitive to in-plane alignment [60], especially for
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Figure 75: Bandwidth is plotted for various waveguide pitches. Twenty-five WDM
channels (k) and a bit rate (B) of 12.5 Gbit/s are assumed. The cross-talk limited
(maximum of 3dB coupling) minimum pitch and the maximum bandwidth are also
plotted for 40 mm and 4 mm long 250 nm x 450 nm waveguides [58, 59].
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micro-mirror couplers that are at a 54.7 �angle. For capacitive proximity communica-

tion, coupling capacitance decreases rapidly with increasing misalignment [16]; at the

same time, cross-talk capacitance increases, resulting in an increased signal-to-noise

ratio (SNR).

Figure 76: Capacitive (a), inductive (b), and optical (c) communication technologies
are shown [16].

4.1.4 Cost of Accurate Alignment

Despite the benefits of accurately aligned tiles, bridges, and the package substrate,

however, an accurate alignment is typically achieved at a steep cost when using con-

ventional alignment techniques. For example, Panasonics’s FCB3 with +/-3 µm ac-

curacy is capable of placing chips at a speed of 1.8s/IC, while the same company’s

BM123 with +/-50 µm accuracy is capable of placing chips at a speed of 0.12s/IC [61,

62]. In sum, alignment accuracy requirement comes at a cost, and there is a signif-

icant manufacturing throughput benefit to a self-alignment technology that aligns

chips to a <5 µm accuracy using a 50+ µm accuracy tool. In this chapter, a novel

self-alignment technology is demonstrated, which allows a <5 µm accuracy align-

ment to be achieved with an initial coarse alignment of <150 µm. This technology is
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Figure 77: In-plane misalignment a↵ects coupling e�ciency. For example, coupling
capacitance decreases with increased misalignment in capacitive proximity communi-
cation [16], while the coupling loss is increased with increased misalignment in optical
proximity communication [60].

Figure 78: A reflective mirror used for optical proximity communication [63].
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demonstrated on various substrates including silicon, FR4, and glass.

4.2 Self-alignment Mechanism

Two micro-fabricated structures are needed for the self-alignment technique described

in this chapter: PSAS and pits. A PSAS and a pit are shown in Figure 79. PSAS

are semi-sphere or truncated-sphere shaped structures that can be fabricated on any

arbitrary planar substrate and are formed by reflowing cylindrical photoresist struc-

tures. Inverted pyramid pits are trench structures etched in <100> silicon substrates;

the four sides are each at an angle of 54.7 �.

Figure 79: A PSAS (left) and a pit (right).

In the simplest configuration involving two substrates that need to be aligned,

four PSAS are formed on the first substrate, and four pits are formed on the second

substrate; the second substrate must be a <100> silicon substrate (Figure 80). The

substrates are brought close together with a rough alignment. The large amount of

misalignment tolerated by the mechanism (as much as the radius of PSAS, which is

150 µm ) allows the assembly to be performed manually without a tool.

A small vertical pressure is applied to the top chip, which forces the four PSAS

to slide along the sides of the pits. The four PSAS continue to slide until the center

of each of the PSAS are aligned with the centers of the pits. At this point, a small

“click” sound can be heard, which indicates that PSAS and pits have engaged; the
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PSAS are in contact with all four sides of the pits, and the two substrates are locked

in alignment as long as a continuous compression force is applied to keep the PSAS

and pits engaged.

Figure 80: Simplest configuration involving PSAS and pits.

4.3 Other Self-alignment Technologies

There are many novel self-alignment technologies described in the literature because of

the significant benefits associated with them. Most notably, the Ball-in-Pit technology

by Oracle Labs [7] uses two inverted pyramid pits with a sapphire ball to align two

substrates. While the alignment mechanism is similar and in fact helped inspire this

research, there are several significant di↵erences between this work and the Ball-in-Pit

technique.

First, a PSAS can be fabricated on any surface in which photolithography can be

performed. This implies that a PSAS can be fabricated not only on silicon wafers,

but also on non-silicon substrates such as FR4 PWB and glass substrates. The

alignment of a FR4 substrate with a silicon substrate using PSAS is demonstrated in

this work [64].

Second, a PSAS does not damage the surface underneath it. This means that

electronics can be located directly underneath a PSAS structure, and thus the active

silicon area is not wasted.

Finally, a PSAS can be compressed at higher temperatures and removed. There-

fore, a PSAS can be used to align substrates during a thermo-compression bonding
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process, and it can also be removed after assembly to improve reliability. Thermo-

compression bonding with a PSAS is demonstrated in a subsequent chapter.

There are also other self-alignment mechanisms that have been published recently.

One method of self-alignment is to use the surface tension of the solder ball itself [65],

as well as the surface tension of water [66] and flux [67]. While these techniques

are good alternative self-alignment technologies, additional complications must be

addressed to ensure an accurate alignment; clean dicing, chip leveling, and precise

volume control are some examples of the factors that must be carefully controlled for

these technologies. In addition, compared to these technologies, the combination of a

positive structure and a negative structure used in this work allows one to minimize

and control the gap between the substrates, which is essential for nanophotonics-

enabled systems.

4.4 Fabrication

4.4.1 Fabrication of Positive Self-alignment Structures (PSAS)

PSAS fabrication begins by spin coating an AZ 40XT-11D photoresist layer. Next, the

layer is patterned into circular patterns with diameters equal to the base of the PSAS.

The photoresist is a chemically-amplified (CA) positive-tone thick resist designed for

etching and electroplating applications. While CA photoresists are di↵erent from

DNQ-based photoresists used for the MFIs, it is determined that the two types of

photoresists have a very similar reflow characteristic; specifically, it is experimentally

seen that the AZ 40XT photoresist reflows at 130 �C and that the Tg is raised during

the baking process. Therefore, the ramped temperature profile developed in the

previous chapter can be used to minimize the deviation during the reflow process.

4.4.2 Inverted Pyramid Pit Structures

Inverted pyramid pits are fabricated using a chemical wet etch process commonly

used to make bulk micro-machined devices (Figure 79). A solution of KOH is used
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to anisotropically etch the [100] silicon wafer. Alternatively, a TMAH-based etch

solution can be used [68] for the CMOS process compatibility. In calculating the

widths of the final pit structure, it is important to note that {111} is also etched,

albeit much more slowly. This results in an undercut, which produces an opening

that is slightly larger than the original pattern. Etching a 300 µm x 300 µm opening

on a layer of silicon oxide deposited using an LPCVD tool results in an opening of

305 µm x 305 µm.

4.5 Geometrical Considerations

The shape of the PSAS and the pit structure determines the final relative position of

the two substrates. In this section, the shape of the PSAS is characterized, and the

relationship between various controllable dimensions and the size of the gap between

two substrates are examined. Pit structures are not explored in this work as the

process for fabricating such structures is already well documented in the MEMS

related literature.

4.5.1 Approximating PSAS Shape

The PSAS is fabricated by reflowing a cylindrical photoresist structure. Consequently,

the final shape can be determined using the same methods used to predict the shape

of a reflowed solder ball; various methods for predicting the reflowed solder ball shape

have been described in [69].

In this work, the reflowed structure is approximated as a truncated sphere. In

order to verify that the approximation is accurate in describing the PSAS structure,

the shape of the PSAS is measured using a confocal laser microscope capable of

capturing the surface profile of a 3D structure. The captured profile of a PSAS is

shown in Figure 81. The analysis of the captured data showed that:

• the profile of the PSAS surface through the center can be accurately approxi-

mated as a circular segment.
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Figure 81: 3D image of a PSAS scanned by a confocal laser microscope, and a plot
showing the measured profile of the PSAS through the center point. Also plotted is
a perfect truncated circle with a radius of 148 µm.
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• the PSAS surface is radially symmetric, evident from the identical horizontal

and vertical profiles extracted from the captured data.

From the results, it is possible to conclude that the shape of the PSAS approxi-

mately represents a truncated sphere.

4.5.2 PSAS Diameter, Pit Opening Size, and Gap

The critical variables that can be easily controlled are the PSAS radius/diameter and

the width of the pit openings. These two variables determine the final position of

the PSAS inside the pit structure and can a↵ect the relative positioning of the two

substrates in all 6 degrees of freedom. However, if the shape and the distances between

four PSAS/pit pairs are identical, only the resulting gaps between the substrates

become sensitive to the shapes of the PSAS and pits.

In addition, the width of the pits also determines the maximum initial misalign-

ment for the self-alignment mechanism to work. It can be seen that the initial coarse

alignment tolerated is equal to half the width of the pit. Initial alignment within this

range will place the centers of the PSAS inside the pit region, thereby causing them

to slide and be guided into the centers of the pits.

In this work, the pit is fabricated with a 300 µm width, which allows up to

150 µm of initial misalignment. At these dimensions, it is possible to align two

substrates using tweezers, without a placement tool. The next section will derive the

quantitative relationships between the PSAS and the pit dimensions and the resulting

gap.

4.5.3 Relationship between PSAS Radius, Pit Width, and Gap

Figure 82 shows the geometry involved in the self-alignment mechanism, and the gap

between the substrates can be derived as shown below. The triangle represents the

cross-section of the inverted pyramid pit; ↵, is the (111) plane in the silicon crystal,

which is at an angle of 54.7� (� becomes 35.3�). The semi-circle and circle segments
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Figure 82: Geometry involved in the self-alignment mechanism.

represent the PSAS; g is the gap between the two chips, and h is the distance from

the surface of the top chip to the imaginary center of the sphere. If the PSAS is a

semi-sphere, then g will be identical to h; and t, which is the di↵erence between h

and g, would be zero.

The pit depth, y1, can be calculated using simple geometry considerations, as

shown below:

tan(�) =
w

y1

y1 =
w

tan(�)

(13)

where w is half the side width of the pit.

Similarly, y2 can be calculated as

sin(�) =
r

y2

y2 =
r

sin(�)

(14)
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As a result, h and g can be derived as

h = y2 � y1

h =
r

sin(�)
� w

tan(�)

g = h� t

g =
r

sin(�)
� w

tan(�)
� t

(15)

Figure 83: For a fixed PSAS diameter, the gap is dependent on the opening size of
the pit. The graph is plotted for a semi-sphere PSAS (i.e., t=0).

Eq. 15 shows that the gap is dependent on both the pit width and the PSAS

radius. Figure 83 illustrates the predicted gap as a function of the pit width.

Two versions of PSAS are developed. The first version is a semi-sphere PSAS

with a base radius of 150 µm. It is fabricated by reflowing a photoresist cylinder that

has a 150 µm base radius and is 90 µm tall. The expected gap with this PSAS is

48 µm, as shown in Figure 83. The second version is a truncated-sphere PSAS with

t=20 µm. It has a base radius of 150 µm, and it is 130 µm tall. It is fabricated

by reflowing a cylinder patterned photoresist that has a 150 µm base radius and is
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95 µm tall. The expected gap with this PSAS is 28 µm .

4.6 Experimental Setup

The alignment capability of the PSAS and pits is demonstrated in two sets of ex-

periments. The first experiment represents the simplest configuration involving two

substrates. The pits are fabricated on a silicon substrate and aligned with a silicon

substrate, an FR4 substrate, and a glass substrate with the PSAS. This demonstrates

that the PSAS and pits can be used to align silicon interposer tiles to a wide range

of substrates.

The second experiment aligns multiple silicon substrates in a 3D configuration.

This demonstrates that the PSAS and pit can be used to align two or more layers

of substrates. This is important because the silicon bridges are aligned on top of

the silicon interposer tiles, which are also aligned with the PSAS and pit to an FR4

substrate. In other words, the silicon interposer configuration is essentially a 3D stack

with three layers.

4.6.1 Vernier Patterns for Measuring Misalignment

Vernier patterns are used to measure alignment accuracy (Figure 84). The patterns

include two separate scales that are aligned in the center, but have a di↵erent spacing

between tick marks; when two substrates containing vernier patterns become mis-

aligned relative to each other, the center tick marks become misaligned. However,

because of the di↵erent spacings between the two scales, another set of tick marks

away from the center becomes aligned instead. By determining which of the tick

marks are aligned and the location of such tick marks relative to the center, it be-

comes possible to measure the misalignment with a resolution that is significantly

smaller than the tick mark spacing.
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Figure 84: The mask layout used for the assembly experiment contains two sets
of corresponding vernier scale patterns (one on each chip) designed to measure the
relative alignment accuracy.
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4.6.2 Fabrication of Vernier Patterns

Vernier patterns on the chip containing the PSAS are fabricated using a lift-o↵ pro-

cess. The process begins with a silicon dioxide layer deposited on a blank wafer using

a PECVD tool. Next, a negative resist (NR71-3000PY) is patterned, which con-

tains the vernier scale pattern as well as circles where PSAS is to be located. Next,

300 Å of titanium is deposited using an e-beam evaporator. Finally, the negative re-

sist is removed by submerging the wafer in acetone placed inside an ultrasonic bath.

A 300 Å thick titanium layer is su�ciently thick to be visible under an infrared

microscope.

A vernier pattern on the chip containing the pits can be fabricated in two ways.

It can be fabricated using the same lift-o↵ process described above, or the pit and the

vernier pattern can be fabricated simultaneously. To fabricate the pattern simultane-

ously, the silicon nitride mask layer for the pit fabrication is patterned with both the

pit openings and vernier patterns. A subsequent KOH etching process creates the pits,

and the areas under the vernier patterns are also etched to cause the teethmarks to

become suspended, as shown in Figure 85. By fabricating the pit simultaneously with

the vernier patterns, the lithography induced misalignment between the pit pattern

and the vernier pattern can be eliminated.

Suspended Vernier Teeth Mark
Concurrently Fabricateed with Pits

Suspended Vernier Teeth Mark

Figure 85: Suspended vernier teeth marks can be concurrently fabricated with the
pits to eliminate the misalignment between the vernier pattern and the pit.

95



4.6.3 Factors A↵ecting Alignment Accuracy

There are two major sources of inaccuracy. The first factor is from the mask aligner

(Karl Suss MA6). Even though the tool specification shows that a topside alignment

(TSA) having an error as low as 0.5 µm is achievable, previous experiments have

shown that the misalignment can be as large as +/-2 µm in many cases. In this

work, PSAS (and pits if not fabricated simultaneously with the vernier patterns) are

aligned to the vernier patterns using the mask aligner.

The second factor is human error. Using the vernier patterns require a person to

subjectively decide which of the tick marks aligns the best, but in some cases this is

very di�cult to discern. In di�cult cases, a set of three aligned vernier tick marks is

identified instead of a single mark.

4.7 Alignment Results

Two PSAS demonstrations are needed to achieve the configuration described in Fig-

ure 2. The first is the demonstration of alignment accuracy for various substrate

materials including silicon, glass, and FR4. This demonstrates that PSAS can be

used to align interposer tiles directly on an FR4 package substrate. The second is the

ability to align multiple layers and the ability to measure the misalignment at each

interface. This is important because the proposed 2.5D platform, which involves the

FR4 package substrate, interposer tiles and a bridge, is essentially a three-layer stack

of substrates that need to be aligned using PSAS.

4.7.1 Alignment of Silicon to Silicon, Glass, and FR4

In this experiment, four inverted pyramid pits are fabricated on 2cm x 2cm silicon

substrates, while four PSAS are fabricated on three di↵erent types of substrates:

silicon, glass, and FR4 (Figure 86). The alignment is performed manually using PSAS

and without the aid of a placement tool, and the alignment accuracy is measured by
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visually observing the vernier patterns under an infrared (Figure 87) or an optical

(Figure 88) microscope (for glass). Table 2 shows the results of the experiment.

Silicon or Glass or FR4

SiliconPSAS
Inverted
Pyramid

Pit

Figure 86: A silicon substrate with four inverted pyramid pits is aligned with three
di↵erent types of substrates containing four PSAS on the surface.

Figure 87: Infrared image showing a PSAS inside a pit.

To observe smaller vernier patterns, which can resolve much smaller misalign-

ments, higher magnifications are needed. However, the limited depth of field and the

gap between two substrates makes simultaneous focusing of the two patterns impos-

sible. To address this, two sets of microscope images are captured each at a focal

plane; the images are then merged in the post-processing, similar to the “focus stack-

ing” technique. Figure 90 shows the infrared microscope images for silicon to FR4

alignment.
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Figure 88: Optical microscope image showing the overlay of the two vernier scale
patterns. The bottom images show high magnification images of the smallest vernier
patterns.

Table 2: Misalignment in µm for Silicon to Silicon/Glass/FR4 Substrates

Glass Polished Silicon FR4
Regions X Y X Y X Y

(µm) (µm) (µm)
Bottom Left >-1 +1 <+1 <+1 +4.4 +2.0
Bottom Right -1 <+1 +1 +1 +3.2 -3.2
Top Right +1 -5.8 <+1 +1 -1.6 -3.2
Top Left +1 -5.6 <+1 <+1 -2.8 +2.4

98



Figure 89: Image of misalignment between an interposer and an FR4 PWB be-
ing measured using infrared microscopy (left). Optical microscope image showing
reflowed PSAS on the FR4 PWB (right).

Figure 90: Silicon to FR4 misalignment measurement using infrared microscopy.
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For the two silicon substrates, the misalignment could not be observed using the

vernier patterns, which indicates that the misalignment is less than the resolution of

both the vernier pattern and the mask (1 µm). For glass substrates, the measured

misalignment was within the accuracy of the mask used except in the Y-axis of the

top vernier patterns.

Silicon

Average Magnitude of 
Misalignment between 

Surfaces
X (µm) Y

2.0

3.2

3.3

3.2

2.0

2.8

3.5

3.2
Silicon

Silicon

Silicon

Silicon

PSAS

Inverted
Pyramid

Pit

Figure 91: Five silicon substrates are aligned and stacked on top of each other. The
average magnitude of misalignment at each interface is shown.

4.7.2 Alignment of Multiple Layers of Substrates

In this experiment, the PSAS’ ability to align multiple layers of substrates, as well as

our capability to measure misalignments at each interface, are demonstrated.

The experimental setup is shown in Figure 91; five 2cm x 2cm silicon substrates

are aligned and stacked on top of each other without a placement tool. The PSAS and

the inverted pyramid pits in the chips were fabricated similarly to the ones described

in the previous section. However, the pits and the PSAS are fabricated on the two

sides of the same wafer, and the front and back side vernier patterns are aligned using

a back-side mask alignment tool.
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The alignment accuracy between the di↵erent surfaces in each stack of five sub-

strates is also measured using an infrared microscope. By focusing on di↵erent focal

planes (i.e., surfaces of substrates), it is possible to determine the misalignment at

each interface. As a result, the misalignment from the back side alignment does not

a↵ect the measurement.

One challenge during the measurement is the degrading image fidelity and contrast

as the microscope focuses on the lower surfaces of the stack; though it is possible to

see the vernier patterns clearly in the first three substrates, the last two substrates

are not clear enough for measurements. To obtain results for the last two surfaces,

the stack is flipped upside down and then measured.

The misalignments are measured at all four corners of the chip at each interface;

Figure 91 shows the average of misalignment measured at each interface. The results

show that an alignment accuracy better that 4 µm can be achieved consistently.

4.8 Conclusion

A novel self-alignment technology is fabricated, and the accuracy of the technology is

experimentally demonstrated between a silicon substrate and silicon, glass, and FR4

substrates. A stack of silicon substrates is also aligned and its accuracy measured.

The accuracy of <4 µm is consistently demonstrated between two silicon substrates

(including in a 3D configuration), and <5 µm misalignment is demonstrated between

a silicon substrate and an FR4 substrate.
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CHAPTER 5

SILICON INTERPOSER TILES AND BRIDGES

5.1 Introduction

This chapter combines the MFI and PSAS technologies to demonstrate the novel

large-scale silicon system integration platform described in Chapter 1. Three silicon

interposer tiles are aligned and mounted on a PWB, and two silicon bridges are

aligned and mounted on top of the three interposer tiles; each silicon bridge spans

two interposer tiles. Four PSAS and four inverted pyramid pits self-align a tile to

the PWB and a bridge to two tiles. MFIs form rematable electrical interconnections

between the three interposer tiles and two silicon bridges; MFIs are fabricated on the

interposer tiles. Pointy tips on the MFIs form low contact resistance with the pads

on the silicon bridges. An alignment accuracy of less than 8 µm between a silicon

bridge and two tiles is demonstrated on an FR4 substrate. Daisy chain and four-point

resistance measurements are performed to verify electrical connections between three

interposer tiles via MFIs and silicon bridges.

5.2 PSAS Geometry and Fabrication

Eq. 15 is used to derive the dimensions of the PSAS and pits and the resulting

gap between substrates. A semi-sphere version of the PSAS with base diameters of

150 µm and pits with 305 µm sides are used to produce a theoretical gap of 47.7 µm.

Therefore, the minimum depth of the pit required is 102.27 µm.

Figure 93 shows a diagram of a pit etched using KOH. To produce pits with

305 µm sides, mask openings with 300 µm sides are used; the additional 5 µm results

from the etching of the (111) plane, albeit at a slower etch rate compared to the (100)
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plane. Since the depth of the pit does not a↵ect alignment accuracy, the etching is

stopped once the undercut reaches 5 µm. The undercut length is observed under the

microscope through the transparent silicon nitride mask layer every 10 minutes of

etching beyond the initial 3 hours, and the slow rate of etching in the (111) plane

allows the process to be controlled very accurately. The undercut length (�/2) can

be evaluated with:

�

2
=

t ·R < 111 >

sin(54.7 �)
(16)

where t is the etch time in hours and R<111>is the etch rate of the (111) plane.

The etching is performed in a temperature controlled bath set at 75 �C with a

45% KOH solution. The expected and the observed etch rate of the (100) plane is

approximately 40 µm/hr (Figure 92), and a (100) plane etch rate to (111) plane

etch rate ratio (i.e. R<100>/ R<111>) of 30 to 35 is observed. Therefore, the

5 µm undercut is created with an etch time (t) between 3 and 3.5 hours, and the

resulting depth ranges from 120 µm to 140 µm.

Figure 92: Etch rate of a <100>silicon wafer at various temperatures [70].
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t x R<111>

54.7°

= t x R<100>

Figure 93: Calculating mask undercut during a KOH etch process.

Phosphorus doped (1-10⌦ · cm) wafers are used for pit wafers since boron doping

can a↵ect anisotropic etch rates. In addition, prime wafers with the lowest available

total thickness variation (TTV) (<5 µm) are used for maximum alignment accuracy.

The wafers are also double side polished with a 525 µm thickness. Once the box of

wafers is opened, the wafers are cleaned using a piranha solution, and 2 µm of LPCVD

silicon nitride layers are deposited immediately thereafter. The silicon nitride layers

are used as the mask material for the KOH etch and as the passivation layer for the

traces.

5.3 MFI Optimization

The design of MFIs must be optimized for the expected gap of 48 µm produced by the

PSAS and the pits. This means that the final height, including the MFI thickness,

will be 48 µm, and the tip must remain the highest point and the stress must be below

the yield stress of nickel tungsten (1.9 GPa) when the MFIs are deformed to the final
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height of 48 µm. The initial MFI stand-o↵ height must also be 5 µm above the

48 µm final height to compensate for the 5 µm TTV inherent in the wafer; however,

an even greater initial MFI stand-o↵ height is desired if it can be attained.

To satisfy these constraints, various parameters of the MFIv2 design are optimized

using Comsol FEM software. Most importantly, the ratio of the tapered length to

the reverse tapered length, the initial stand-o↵ height, and the o↵set from the center

that determines the initial tip angle, are defined as variables (Figure 94), and their

relationships with relevant performance metrics are shown in Table 3. Increasing the

tapered length distributes stress over a larger area, which reduces mechanical stress;

at the same time, this reduces the reverse tapered length, which results in a worse

bending profile (i.e., the tip is rolled more easily). Increasing the stand-o↵ height

allows larger surface variations to be compensated and produces MFIs at a greater

slope because of the increased height of the sacrificial photoresist; however, the level

of deflection is increased, which increases the stress. Increasing the o↵set from the

center results in MFIs with a greater initial tip angle because the more sloped area

of the sacrificial photoresist is utilized; as a result, the bending profile is improved

but the increased o↵set from the center requires a taller sacrificial photoresist to be

formed to maintain the same initial stand-o↵ height, and the pitch is also increased

due to the wasted flat region at the center. Other adjustable parameters include the

MFI thickness, the reverse-taper width, the MFI length, and the tip shape. Figure 94

shows the stress and the bending profile of the optimized MFIs.

5.4 Interposer Tile Design and Fabrication

The interposer tiles contain pits on both sides of the wafer at the same four corners.

Moreover, MFIs are fabricated on the top surface facing away from the motherboard.

Copper wires are also fabricated on the top surface to connect the MFIs in a daisy

chain configuration in conjunction with wires on the bridge chips. The dimensions of
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Stand-off Height

Taper Length Reverse Taper Length

Offset from Center

Thickness

Initial Shape

Final Shape

48 μm

60 μm

Highest Point

Figure 94: Optimized shape of MFIv2 shows that the maximum stress is in the
elastic regime. The bending profile shows that the tip remains the highest point of
the structure.
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Table 3: The relationship between MFI parameters and performance metrics.

A↵ected Metrics
Increased

Parameters
Mechanical Stress

at
Final Height

Surface Variation
Compensation

Initial Tip
Angle

Bending
Profile

Taper to
Reverse Taper

Length
" – – #

Initial
Stand-o↵

Height
# " " –

O↵set from Center – – "" "

a single interposer tile die are 2cm x 2cm, and thirteen interposers can be fabricated

on a single 4-inch wafer.

Four masks are used to fabricate wafers containing interposer tiles. The first

mask contains squares for pits (“pits mask”); the second mask contains rectangles for

the sacrificial photoresist used in fabricating MFIs (“sacrificial PR mask”); the third

mask contains an array of MFI geometry (“MFI mask”); and the forth mask contains

wires, vernier patterns, and other alignment marks (“traces mask”).

The pits on both sides of the wafer are fabricated first and concurrently. Using

the pits mask, the squares are patterned on one side of the wafer, and a back side

alignment (BSA) technique is used to pattern the back side of the wafer. The sym-

metric mask allows the same mask to be used to pattern both sides. An anisotropic

etch in a KOH solution etches both sides of the wafer concurrently.

The traces mask is used to form the wires, vernier patterns, and other alignment

features. A lift-o↵ process is used to deposit titanium, copper, and titanium layers.

The mask also contains squares with thick borders, as shown in Figure 95. These

square patterns are used to align the trace mask to the pits that are formed first; the

oxide openings of the pits fit inside the bordered squares.
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Pit fits inside

Square Pattern
with Border

Vernier Patterns
on Trace Mask

Figure 95: A square pattern with a thick border is used to align the traces mask to
the pits.

Next, MFIs are fabricated by initially forming the sacrificial photoresist structures

with the sacrificial PR mask. A feature-to-feature alignment technique is used, as

shown in Figure 96, to align the sacrificial photoresist mask to the traces. Feature-

to-feature alignment is necessary because the presence of alignment marks on the

sacrificial photoresist mask reflows to form an arbitrary structure that may not be

completely covered using the seed layer deposition method; an incomplete coverage

by the seed layer causes the electroplating mold and the sacrificial photoresist to

interact, which can cause catastrophic damage to the sample.

After the reflowing and baking of the photoresist, a seed layer is deposited on

top, and the MFI mask is used to pattern the electroplating mold. Following the

electrodeposition of nickel tungsten, the electroplating mold, seed layer, and sacrificial

photoresist are removed. The wafer is then diced, and a gold layer is deposited on

top of the traces and on the MFI surfaces using an electroless deposition process.

The pits and the MFIs that are fabricated on the same wafer surface are shown in
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Square Pattern
with Border

on Traces Mask

Traces

Sacrificial PR

Feature-to-feature
Y-axis alignment

Feature-to-feature
X-axis alignment

Figure 96: Feature-to-feature alignment of sacrificial PR mask to the traces.

Figure 97.

A single interposer tile is shown in Figure 98. The tile contains a 10x100 array of

MFIs and 100 horizontal traces that connect to 5 MFIs on each side of the tile. As

a result, for a three tile system, 40 MFIs are in a single daisy chain, and 100 such

chains can be formed.

5.5 Bridge Design and Fabrication

The bridges contain the PSAS and traces that make contact with the tip of the

MFIs. The trace mask also contains donut-shaped features at the PSAS sites so that

the PSAS mask can be aligned accurately to the traces (Figure 99) and the vernier

patterns. The dimensions of the bridge die are 0.6 cm x 2 cm.

The traces are fabricated first using a lift-o↵ process on a blank silicon wafer with

a 1 µm layer of silicon oxide; titanium, copper, and gold layers are then deposited

using an e-beam evaporator. The bridge wafer is diced after the fabrication of the

PSAS.
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Figure 97: MFIs are fabricated on the same surface as the inverted pyramid pits.

5.6 Interposer Tiles and Silicon Bridges

The test setup is shown in Figure 100. Three interposer tiles and two silicon bridges

are aligned and assembled using PSAS and inverted pyramid pits, and electrical

connectivity between interposer tiles through MFIs is demonstrated. A summary of

the system configuration is shown in Table 4.

5.6.1 Assembly of Interposer Tiles and Si Bridges

After the fabrication of the PSAS, pits, and MFIs, the interposer tiles are brought

together and coarsely aligned to the FR4 PWB. Next, the interposer tiles are gently

pushed downward and slightly moved around laterally until all PSAS and pit pairs

engage and the interposer tiles become fixed. The height of the PSAS is greater than

the height of the MFIs; this prevents damage to the MFIs during the assembly process

when the PSAS are disengaged from the pits and are sliding across the substrate

surface. The MFIs only make contact with the corresponding pads after the PSAS

engage with the pits and the gap between the substrates is reduced. The silicon

bridges are assembled in a similar manner.
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Pits

10 x 100
MFI Array

100 Horizontal 
Traces

Figure 98: The mask design for the interposer tiles.
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Feature for PSAS Mask Alignment

MFI Pads
(2 MFI Tips Make Contact per Pad)

Vernier Patterns

Figure 99: The bridge design is shown on the left. A magnified image of the design
is shown on the right; MFI pads, the donut alignment mark (for alignment with the
PSAS mask), and vernier patterns are identified.
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FR4 PWB

Interposer Tile #1 Interposer Tile #2

Silicon Bridge

Interposer Tile #3

Silicon Bridge
Wires

Probe for Measuring
R between #1 and #3

Probe for Measuring
R between #1 and #2

Probe for Measuring
R between #2 and #3

CMOS IC

3D ICs3D Memory Stack

RFIC

2cm 2cm 2cm

0.6cm 0.6cm

Figure 100: Multiple interposer tiles are interconnected via mechanically flexible
interconnects and are aligned to the PWB and the silicon bridges using PSAS and pits.
Probe locations for measuring the resistance between interposer tiles are identified in
the figure.

For simplicity, an adhesive material is applied at the edges of the interposer tiles

and the silicon bridges to hold the assembly. The assembled interposer tiles and

silicon bridges are shown in Figure 101. The measurement of the alignment accuracy

before and after the application of the adhesive material shows that the alignment is

not a↵ected.

It is worth noting that the adhesive material should be replaced with a more

advanced clamping mechanism for future works. A clamping mechanism would enable

precise control of the position as well as the magnitude of the clamping force to

minimize tile warpage and ensure reliable operation of the MFIs. The ability to clamp

and unclamp the tiles and bridges in conjunction with temporary interconnects, such

as MFIs, and non-bonding alignment mechanisms, such as PSAS, would enable tiles

and bridges to be replaced repeatedly. An example of the clamping mechanism is

discussed in Chapter 6 and [17].
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Figure 101: Image of the three interposer tiles mounted directly on FR4 and inter-
connected using silicon bridges and MFIs.
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Silicon Bridge
Interposer Tile #2

Interposer Tile #1

PSAS / Pit Pair

Figure 102: X-Ray image showing the two aligned Pit/PSAS pair, silicon bridge,
and two interposer tiles. Array of MFIs as well as traces connecting them on both
the interposer tiles and the silicon bridge are shown.
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Table 4: Summary of Properties for Assembled Platform

Property Value
Interposer Tile Area (cm2) 4.0
No. of Interposer Tiles 3
Silicon Bridge Area(cm2) 1.2
No. of Silicon Bridge 2
Tile/Bridge Thickness (µm) 500
Total Available Silicon Interposer Area (cm2) 9.6

5.6.2 Alignment Accuracy Measurement

Since the silicon bridges are aligned to the interposer tiles on the assumption that the

interposer tiles are aligned perfectly to the PWB, it is essential that the alignments

between the PWB and interposer tiles are accurate even though nanophotonics and

high-density I/Os do not exist between those two layers. The alignment accuracy

is measured by observing vernier patterns fabricated on the silicon bridge and the

interposer tiles via infrared microscopy. Results are summarized in Table 5.

Table 5: Misalignment between Silicon Bridge and Interposer Tiles

Silicon Bridge 1 Silicon Bridge 2
Regions Horizontal Vertical Horizontal Vertical

(µm) (µm)
Bottom Left -4.0 +4.6 -5.2 -5.0
Bottom Right -5.4 -4.8 -5.0 -5.0
Top Right +5.8 +3.2 -5.8 -5.2
Top Left +6.0 -5.0 -7.6 -5.0

5.6.3 Electrical Measurements

Electrical resistance is measured between interposer tiles to verify electrical connec-

tivity. Figure 100 shows the locations of the probes for measuring resistance. Table 6

summarizes the results. Expected values are calculated by taking into account the

resistance of the MFIs measured using a four point electrical measurement as well as

the gold-coated wire traces fabricated on the interposer tiles and silicon bridges. The
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data shows that the resistance is within two standard deviations of the expected re-

sistance. The major source of variation is the wire traces which are electroless plated;

noticeable thickness variation is introduced after this process.

Table 6: Resistance Between Interposer Tiles

Resistance between interposer tiles
1 and 2 2 and 3 1 and 3

Average (⌦) 1.51 1.60 4.98
Expected Value (⌦) 1.32 1.32 4.36

Standard Deviation (⌦) 0.138 0.140 0.363
No. of Samples 20 20 20

No. of MFIs in Chain 20 20 40

5.7 Conclusion

A novel large-scale silicon system platform with 9.6cm2 of active silicon area is demon-

strated. The platform contains three interposer tiles and two silicon bridges, and an

accurate alignment (<8 µm) between silicon bridges and interposer tiles is achieved.

The accurate alignment makes it possible to accommodate nanophotonics to enable

a high bandwidth and low-energy system in the future. In addition, mechanically

flexible interconnects and silicon bridges are used to provide electrical connections

between interposer tiles without having to use motherboard-level interconnects.
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CHAPTER 6

ELASTOMERIC BUMP INTERPOSER FOR PSAS

PACKAGING

6.1 Introduction

A critical requirement for PSAS-enabled systems is a vertical compression force to

“clamp” the multiple layers of substrates including an FR4, interposer tiles, and

bridges. The compression force maintains the alignment by keeping the PSAS and

pits engaged; it is determined that 1 lbf to 2 lbf is required to withstand the vibrations

that exist in data centers and rack mounted server housings.

The distribution of the pressure on the substrates is also critical to control; specif-

ically, the pressure must be symmetrically distributed around PSAS/pit sites. An

asymmetric distribution may cause the substrates to warp, which can a↵ect the relia-

bility and the performance of the system. Reliability is a↵ected because the substrates

can be damaged physically, while performance is a↵ected because the warpage may

a↵ect the coupling e�ciency between layers and the device characteristics on warped

substrates.

This chapter describes a component designed to address the challenges associated

with applying an accurate amount of force with an accurate distribution of pressure.

Elastomeric bump interposers are packaging components that can be placed between

a clamping mechanism and a substrate aligned with a PSAS. A thick tungsten layer

and precisely designed and placed PDMS domes deliver precise amounts of force at

predetermined locations to minimize warpage. This research activity was done as

part of an internship at Oracle and is published in [17].
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6.2 Background

As integrated-circuit (IC) technology continues to scale to smaller critical dimensions,

it is increasingly di�cult for existing interconnection technologies to keep up with

communication requirements such as high bandwidth, low power, reliability and low

cost. Chip stacking in multi-chip modules (MCMs) is being investigated to address

these challenges, and to enable future high-density, high-performance systems.

However, because MCMs by definition include multiple chips, it is all the more

important to solve the so-called known-good die (KGD), problem. In particular,

manufacturing yields can be improved and cost can be reduced by ensuring that only

good semiconductor dies are included in an MCM. This can be achieved by increasing

the amount of testing at the die level; because of cost and test-time limitations, this

additional testing typically needs to be performed at the speed of the ICs at the

wafer-level, which can be challenging.

Alternatively, an MCM can be assembled in a remateable fashion using Proxim-

ity Communication (PxC) signaling technology [71]; PxC is a type of coupled-data

interconnect that allows one to wirelessly interconnect multiple chips into MCMs to

form a single logical chip. Its wireless nature is a key feature as it allows for rework,

allowing one to identify KGD and if necessary, replace non-functional die.

However, in order to achieve high-speed inter-chip signaling with PxC intercon-

nects, accurate relative alignment of components in a multi-chip package using Prox-

imity Communication (PxC) I/Os, capacitive [72] or optical [7], is absolutely critical.

This is because the alignment accuracy correlates strongly with the coupling e�ciency;

for optimal performance, these chips assembled in a face-to-face configuration, must

be aligned accurately in all six degrees-of-freedom and with a minimal separation be-

tween them. Typically, lateral misalignments of better than 8m and l m are desirable

for capacitive and optical proximity interconnects, respectively.
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One method for achieving these stringent alignment requirements is by using Ball-

in-Pit self-alignment structures [73]. This technique requires inverse pyramidal pits to

be fabricated at designated locations on the Si ICs that are to be aligned; a precision

sapphire ball is then sandwiched within the two pits. By conforming the pyramidal

pit etch process, a common Si anisotropic wet etch process in MEMS fabrication,

to CMOS foundry standards, and using accurately sized sapphire balls, submicron

alignment between ICs has been previously demonstrated [74].

In the simplest PxC package, two chips (islands), attached to a substrate, may

be interconnected via a third chip (bridge) that attaches face-to-face with the islands

(Figure 103). This bridge chip can be powered directly by the islands or independently

with wire bonds but communicates o↵-chip solely via PxC. In order to keep chips

engaged and aligned using Ball-in-Pit technology, an external clamping force must be

applied between the chips. The island chips are assembled to the package substrate

using standard C4 bumps and require freedom-of-movement in all directions during

the flip-chip bonding process. Once the islands are attached via reflow soldering,

they provide a reference mechanical plane against which the clamping force can be

applied. The bridge chip is placed face-up on the substrate and has some face-to-face

overlap with the island chips, where the PxC interconnects and ball-in-pit structures

are situated. When assembled, this bridge chip must push up against the island chips

for the ball-in-pit structures to engage and remain aligned.

For a PxC package described above, what one needs is a packaging mechanism

that allows the bridge chip to be disengaged from the islands during industry standard

reflow processes, but post-reflow returns the bridge chip to the correct position. In

addition, it would keep the chips aligned by applying the needed force to the back of

the ball-pit sites.
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Figure 103: Three-chip MCM package with elastomeric bump interposer.

6.3 Package Assembly

Previous work approached this through the use of underfill and vacuum tools [75];

the bridge chip is placed at the bottom of the substrate cavity during the island

chips solder reflow process with the ball-and-pit disengaged. Then, using a vacuum

tool, the chip is raised and underfill material is used to fill the bottom of the chip

that is keeping the ball-and-pit sites securely engaged. Though this method showed

that chips may be aligned to 8 µm lateral accuracy, it is di�cult to precisely engi-

neer the force distribution on the bottom of the bridge chip. Rework may also be

di�cult since removing the underfill material is not a trivial task. In this work, we

introduce an alternative method of assembly using a mechanical interposer containing

elastomeric structures whose shapes and locations can be precisely engineered. As

a result, by placing this interposer inside the package cavity, it is now possible to

control the amount of force applied to the bridge chip as well as the distribution of

force. Moreover, this method eliminates the need for vacuum tools and allows for

simple pick-and-place type assembly chips. Additionally, with the right fixturing,

multiple bridge chips in a large-array multi-chip package could be aligned and locked

in place simultaneously. The proposed assembly process using the elastomeric bump
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interposer is shown in Figure 104.
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Figure 104: MCM Assembly Process using an elastomeric bump interposer.

For pushing down the chip during the reflow process, a fixture (Figure 105) can

be used. It consists of an arm with a narrow center section, which is designed to fit

between two island chips, on top of the exposed center section of the face- up bridge

chip. The tool presses on the exposed bridge chip to lower it while the island chips

are reflowed.

This tool can be extended to push down multiple bridge chips at once in the

case of a system with multiple bridge chips. This can increase assembly throughput

significantly as it allows simultaneous assembly of every chip in the system, regardless

of size.

The interposer designed and fabricated in this work consists of an array of elas-

tomeric structures on a thin, but sti↵ substrate. The design targets for this interposer
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Figure 105: Tool/Fixture for pushing down the bridge chip.

include the ability to provide as much as 1 lbf per ball-pit site in the engaged mode

and to be compressed su�ciently to disengage from the island chips su�ciently (by

applying greater than 1 lbf/site) to allow them to move freely during the solder reflow

process. The interposer also requires an ultrathin form factor to fit into the package

cavity, which is 300 µm deep. Considering that the solder ball diameter on the island

chips used in this work is 80 µm, one can safely assume that the maximum lateral

freedom of movement required for the solder ball self-alignment is half of the solder

ball diameter, 40 µm. Using simple trigonometry, we can determine that the ball-pit

sites need to be lowered by 25 µm from the engaged state in order to allow for such

lateral movement (Figure 106). FEA using ANSYS was performed to determine ex-

actly how much force is required to compress the interposers by 25 µm, as well as

to determine the shape of the elastomer needed. The elastomer was modeled as an

Ogden hyper-elastic material [76].

Unfortunately, finding the amount of force required to do this is not trivial due
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Figure 106: Ball-pit sites must be lowered 25 µm to allow for the lateral movement
required in solder ball self alignment. This is due to the 54.7 degrees angled pits
etched in the Si substrate.
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to the location in which the downward force is applied (the center of the bridge chip)

that produces warpage of the bridge chip. At first, an interposer made entirely out

of elastomeric materials was examined, however, as shown in Figure 107, warpage of

the bridge chip, as measured by the vertical height di↵erence between the ball-pit site

and the center of the chip (“Edge2Center”), can exceed the depth of the cavity and

cause the bridge to bottom out before the ball-pit sites can be successfully disengaged.

In fact, what was determined during the first design iteration is that the interposer

must also act as a sti↵ening layer to reduce warpage, and eliminate the bottoming-out

e↵ect.

!!"#$%

!"
#
$%

Figure 107: Edge2Center (warpage) vs. total thickness of the chip + sti↵ener stack.

With a sti↵ening layer (tungsten in this work), the warpage is significantly re-

duced. A sti↵ening layer also provides additional benefits; by fabricating elastomers

directly to it, we can precisely position the elastomers and ensure that the elastomer

bumps are right under the ball-pit sites. It also makes it easy to place the elastomers

inside the package substrate; without the tungsten layer, one would have to position

each individual elastomer inside the package substrate.
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Figure 108: The bridge chip is warped as the tool pushes it down to disengage
the ball-and-pit sites. Too much warpage can cause the chip to bottom out before
successful disengagement.
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Even the sti↵ening layer, however, was not enough to prevent bottoming out

of the bridge due to warpage, so another method was devised. One can further

reduce the warpage of the bridge chip without reduction in the reaction force by using

multiple smaller elastomer bumps instead of a single large structure. In Figure 109,

the warpage vs. force of two di↵erent elastomer bump distributions is compared. One

has a single large dome and other has four smaller bumps symmetrically distributed

around the ball-pit sites. The result shows a significant reduction in warpage at

identical levels of reaction force. The main reason for this is the fact that elastomers

are placed closer to the center of the chip, e↵ectively shortening the distances between

support structures.

Using the four elastomer bump configuration as well as the tungsten sti↵ening

layer, optimal bump dimensions were found. In the designed elastomeric bump inter-

poser, 1 lbf is applied at each ball-pit site in the engaged state while 3 lbf is required

per site to lower the bridge by 25 µm and disengage it su�ciently from the islands

during reflow. At the 3 lbf/sites, a 70 µm gap exists between the bridge chips and

the bottoms of cavities, meaning that the bottoming-out e↵ect does not occur.

It is worth noting that for this work where ball-in-pit is used for alignment between

island chips and a bridge chip, it is vital that the force applied to the ball-pit sites be

symmetrically distributed. Asymmetric force distribution will result in chip warpage.

6.4 Fabrication

6.4.1 Overview

For the interposer, a fabrication process was developed with cost control being an

important consideration. Specifically, a stamping process is developed that lends

itself to batch processing not only at the wafer level but also at the panel level. In

addition, the stamping mold is reusable and was demonstrated to stamp out several

elastomeric bump interposers. The fabrication process can be divided into three
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Figure 109: Using four smaller elastomer bumps instead of one larger one can reduce
the warpage of the chip at the same level of reaction force.
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major steps.

1. Positive dome fabrication using photoresist reflow

2. Negative dome SU-8 mold fabrication

3. Positive silicone dome stamping using the SU-8 mold

6.4.2 Dome Fabrication

Dome fabrication is the step where the shape of the final elastomer is determined, as

negative and positive copies of it are made in subsequent steps. Although a truncated

sphere shape is used for our application, there are various other shapes that can be

used and have been considered. For example, a cylindrical pillar is an example of a

di↵erent shape that can be used.

The shape of a truncated sphere, however, has many advantages in the fabrication

and the operation of the package compared to other shapes. First, the dome does

not have sharp edges that can be damaged when trying to separate the newly formed

mold. Second, its smaller surface area makes it easier to separate the mold from it

without the structure detaching and getting stuck in the mold. Third, its dome shape

allows a higher vertical range-of-movement for the same target load force. Fourth,

the dome shape eliminates the possibility of buckling.

The truncated sphere is fabricated by reflowing a photoresist structure. This

technique is commonly used for creating micro-lens structures; however, in this appli-

cation, the size and volume of the photoresist that needs to be reflowed is significantly

larger than what is typically used in a micro-lens process making it more complex.

The main challenge is in reflowing large structures due to the fact that most

photoresists have a limited time in which they can remain in a glassy state. The glass

transition temperature is continually increasing as it is being reflowed, and eventually

it is raised beyond the decomposition temperature or beyond the maximum allowable
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process temperature. As a result, the available time in the glassy state for a particular

photoresist may not be su�cient to completely reflow a structure as wide and tall

as the elastomeric dome needed per the design (180 µm). Both the photoresist and

reflow process have to be carefully chosen to ensure that the photoresist is reflowed

completely and consistently. In order to preserve the patterning accuracy of the

domes, the reflow technique introduced in the previous section and in [77] are used.

The resulting dome structures are 180 µm tall and are shown in Figure 110.

Figure 110: Reflowed photoresist to form truncated sphere structures that are
180 µm tall.

6.4.3 Mold Fabrication

The next step in the fabrication process is to create a negative mold of the reflowed

structure using SU-8. However, SU-8’s excellent adhesion to the photoresist struc-

tures, it is necessary to place an intermediary material in between so that the negative

SU-8 mold can be detached from the positive structure without damage. Unfortu-

nately, SU-8 also has excellent adhesion to many compatible intermediary materials

that were considered. The solution is to use a sacrificial layer; rather than looking

for materials with poor adhesion to SU-8, a material that can later be softened and

removed was employed.

There are three layers involved in making this sacrificial process work. In addition
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Figure 111: Metal layers used to prevent SU-8 interaction with the sacrificial layer.

to the sacrificial material, two metal layers are used to prevent interaction between

the sacrificial material, the reflowed photoresist and the SU-8, as shown in Figure 111.

The first metal layer is sputtered on top of the reflowed photoresist structures and the

sacrificial material (a thin photoresist layer) is spin coated above it. The sacrificial

resist is then flood exposed and baked before the second layer of metal is sputtered

on top.

For this application, the sacrificial material used is a negative resist. However,

any material that is easily removed and softens or even decomposes when heated

above 100 �C is adequate for this application. The material must not be a↵ected at

temperatures below 100 �C (the SU-8 PEB temperature)

Once the sacrificial layer and two metal layers are deposited, SU-8 is poured over

the positive dome structure and a glass substrate is placed over the SU-8. Then, the

SU-8 is cross linked by exposing it in a flood UV light through the glass slide and

placing it in the oven (90 �C) post-exposure bake.

Once the SU-8 mold is fully crosslinked, it can be separated by placing for a few

seconds on the hot plate, which has been heated to 150 �C; the sacrificial layer will
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Figure 112: Negative SU-8 mold after the separation; the mold has a metal layer
that can be removed using a wet etch process.

soften, and it becomes easy to separate the mold. Any remaining sacrificial photoresist

on both sides can be easily removed using solvents. The SU-8 mold is then placed in

wet etchants to remove the metals, leaving behind only the SU-8 negative mold. An

image of the resulting SU-8 mold is shown in Figure 113.

6.4.4 Silicone Stamping

Once the mold is created, a silicone material is poured over the mold and a tungsten

foil plate is placed on top. While the negative features in the SU-8 drive the shape

of the bumps, the pressure applied on the tungsten during the stamping process

determines the thickness of the elastomer film in the “field”. It is vital that the force

applied during this process be uniform. The resulting film thickness is targeted to

be 10-30 µm thick. In this work, precision weights are used. With the pressure still

applied, the whole stack, including the weight, is placed in an oven to cure. Once

cured and cooled to room temperature, one can separate the tungsten plate with

elastomer structures quite easily from the SU-8 mold.
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Figure 113: On the left is an optical microscope image of the SU-8 mold and on the
right is an optical microscope image of the resulting stamped elastomer structure.

Finally, the tungsten film with elastomer domes are cut into package-cavity sized

pieces. Dicing is the method of choice for cutting the interposer since other methods,

including shearing, resulted in warpage and splitting of the tungsten plate.

6.5 Mechanical Characterization

To ensure that the elastomer dome structures perform as designed, mechanical charac-

terization was performed. A uniaxial compression tool from MTS is used to determine

the compliance of the elastomer structure. This instrument is able to measure vertical

deflection to a resolution of one-tenth of a micron. Figure 115 shows the result of

the uniaxial compression test performed on four elastomer domes (one ball-pit site),

compared to the simulation results. When the interposer is compressed by ⇠ 60 µm,

1 lbf of reaction force is measured.

To make sure that the interposer structure does not change its properties during

the high temperature reflow process, the interposer was subjected to the reflow con-

dition, and its compliance measured again. The results are also shown in Figure 115;
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Figure 114: Cross section image showing the silicone dome as well as the tungsten
layer.
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Figure 115: Uniaxial compression measurement compared to the simulation results.

the mechanical characteristics of the interposer do not significantly change after the

reflow process.

6.6 Conclusion

A low-cost interposer with elastomeric structures was designed and fabricated for

use in batch assembly and alignment of proximity communication enabled multi-chip

packages. These interposers are carefully designed to minimize the warpage of the

bridge chip during the assembly process by using multiple elastomeric bumps, and

also by using sti↵ening Tungsten layers. At the same time the interposer also provides

adequate force to keep the Ball-in-Pit reliably secured. Future work in this project

will involve tests at the package level including verification that good alignment can

be achieved, enabling high e�ciency PxC.
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CHAPTER 7

SACRIFICIAL PSAS FOR FLIP-CHIP BOND ASSEMBLY

7.1 Introduction

In Chapter 5, the PSAS’ compatibility with rematable MFIs is demonstrated; it is

shown that a low resistance contact can be formed using MFIs that have been aligned

using PSAS. In this chapter, the PSAS’ compatibility with a non-flexible interconnect

is described. Permanent interconnects pose a a greater challenge for PSAS compared

to MFIs because the bonding process involves thermo-compression. The bonding

technology also often requires an underfill, and the PSAS needs to be removed to

prevent interaction between the underfill and the photoresist-based PSAS material.

The PSAS’ compatibility with the thermo-compression bonding is important be-

cause this compatibility allows for a wider range of system configurations involving

interposer tiles and bridges. For example, in the multi-chip package configuration

described in Chapter 6 and Figure 103, the island chips are bonded with solder balls

using a thermo-compression bonding process. The techniques described in this chap-

ter can eliminate the need for placement tools entirely even in such configurations.

There are also situations where flexible interconnects may not be appropriate.

For example, mobile applications in which the system experiences frequent shock and

movements may cause flexible interconnects to become disconnected from pads. The

work in this chapter aims to increase the range of applications and system configura-

tions that are possible with PSAS.
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7.2 Flip-chip Bonding

Flip-chip bonding is a high-performance assembly technique that enables area-array

interconnections between a chip and a substrate. The technique typically involves

an array of solder balls and a matching array of pads, and it also requires a flipchip

bonder to align, apply heat, and provide compression for bonding.

In this chapter, a novel enhancement of the flip-chip assembly technique is pre-

sented through the use of two novel structures: sacrificial positive self-alignment

structures (PSAS) and inverted pyramid pits (”pits”); using this technique, an array

of solder balls can be manually aligned and bonded without using an expensive, large

placement tool. An overview of the process is shown in Figure 116. Features of the

technique include:

1. Cost of assembly is reduced as the need for an accurate flip-chip bonder and

additional tools are eliminated.

2. Assembly throughput can be increased because applications requiring high-

accuracy alignment can be performed with high-speed but low-accuracy place-

ment tools.

3. Ability to correct large initial misalignments enables the end user to perform

the assembly with minimal packaging capability.

7.3 Background

7.3.1 Flip-chip Bonding

In a typical flip-chip assembly process, a flip-chip bonder tool picks up a chip con-

taining an area-array of solder balls facing downward. The chip is then aligned and

placed on top of a substrate with a corresponding area-array of pads. A survey of

commercially available placement tool specifications shows that there is an inverse
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Figure 116: Brief overview of the tool-less self-alignment bonding process.

relationship between alignment accuracy and speed of alignment. For example, a

flipchip bonder from Panasonic (Model FCB3) is capable of aligning a chip to a sub-

strate with +/-3 µm accuracy in 1.8s. On the other hand, a di↵erent model from the

same company (Model BM123) with a much lower accuracy of +/-50 µm can align

a chip to a substrate in 0.12 s [61, 62]. Thus, it is possible to see that the align-

ment accuracy requirement comes at a cost, and there is a significant manufacturing

throughput advantage to being able to place chips to a less than 5 µm accuracy using

a 50+ µm accuracy tool.

Once the chip and the substrate are aligned, the flip-chip bonder mounts the chip

on the substrate so that the solder balls and pads come into contact. The reflowing of
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the solder physically bonds and electrically interconnects the chip and the substrate.

Application of flux to the solder is essential for high quality bonds.

The alignment accuracy required for the flip-chip process depends on the inter-

connect technology used; for arrays of solder balls, the misalignment must be smaller

than the radius of the solder interconnects (self-aligned through molten solder’s sur-

face tension), while optical interconnects require an alignment accuracy better than

1 µm for optimal performance [14, 15, 16]. It has been shown that for an optical

system with grating couplers, less than 2 µm misalignment is needed to achieve less

than 1dB excess loss [15]. As the interconnect density increases, and as the industry

looks towards optical interconnects, highly accurate alignment will become critical

for future system assembly needs.

7.3.2 Other Self-alignment Techniques

A number of self-alignment techniques compatible with flip-chip bonding have been

published previously. Most notably, the surface tensions of flux [67] and water [66]

have been exploited to provide the self-alignment between the chip and substrate.

However, there are several challenges associated with such techniques, which warrants

alternative techniques such as the one described in this work. Challenges include:

• Alignment accuracy of the self-alignment technique using the entire die surface

is limited by the dicing precision, which is limited to +/- 15 to 25 microns [66].

• For the self-alignment technique that exploits pad areas, the magnitude of cor-

rectable misalignment is dependent on pad size; large pads (i.e., large pitches)

are required to correct large initial misalignments.

• For the self-alignment technique that exploit water or flux surface tension, the

ability to dispense a small volume of water is essential [78]. In addition, leveled

surfaces are required [79].
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In another study, sapphire balls and inverted pyramid pits are used to provide

self-alignment [65]. However, such mechanisms lack the ability to be compressed

during the assembly process. Another paper presented an alignment using a precisely

patterned template and DRIE etched chip edges, but this approach can be costly,

and errors may be introduced when holding the chip in the corner position of the

template [80].

The technique presented in this work can correct large misalignments independent

of the sizes and pitches of the I/Os used, and its alignment performance is independent

of dicing accuracy. Also, additional or specialized tools are not required.

7.4 Sacrificial Self-alignment Technology

PSAS and pits (Figure 79) are used for the alignment. PSAS are reflowed photoresist

dome-like structures; depending on the initial heights of the cylinder-shaped struc-

tures that are reflowed, truncated spheres or semi-spheres can be formed [81].

The use of photoresist material is suitable for this application because it enables

compression of the PSAS during the thermo-compression bonding process, and it can

also be removed chemically once the bonding process is complete.

7.4.1 Geometrical Considerations

The width of the pit, in conjunction with the diameter of the base of the PSAS, plays

an important role in determining the gap between the chip and the substrate. The

resulting gap, which is greater than the solder height, is critical because premature

contact between the solder and the bonding surface could halt the self-alignment

process before completion.

For the process to be successful, the height of the solder used must be less than

the final gap determined by the PSAS and pit sizes. The formula to calculate the

resulting gap has been derived in Chapter 4 and in [82].

In this work, the resulting gap between the chip and the substrate is calculated to
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Figure 117: Microscope image showing a PSAS and pads.

be 28 µm. The height of the solder is 18 µm. As a result, a compression of at least

10 µm is required for the bonding process to be successful. A smaller gap is desired

to prevent lateral shifts during the thermo-compression process, but a smaller gap

also requires that the height of the solders and the accuracy of the gap produced by

the PSAS and pits to be controlled precisely.

The width of the pit is also important because it determines the maximum initial

misalignment that the self-alignment mechanism can tolerate. If the initial alignment

is less than half the width of the pit, the center of the PSAS will be located within

the square region of the PSAS. This causes the PSAS to slide into the center of the

pit when pressure is applied.

To enable one to align without a placement tool, it is advantageous to make the

coarse alignment tolerance as large as possible. The pits in this work are fabricated

with 300 µm sides, which are large enough for assembly without an advanced place-

ment tool.
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Figure 118: SEM image showing a pit, solder balls, and traces.

7.4.2 Assembly Process

The complete process flow is shown in Figure 119.

7.4.2.1 Intentional Misalignment and Placement (Steps 1 and 2)

The process assumes that misalignment less than half the width of the pits exists

during placement. Flux is applied to the solder array, and the chip and the substrate

are brought into contact.

7.4.2.2 Inducing Self-alignment (Step 3)

Once the chip and the substrate are in contact, a small amount of vertical compression

force is required to initiate the self-alignment process. A “click” sound is heard as

the PSAS slide into the pits, and the chip and the substrate become aligned. At this

stage, the solder balls are not in contact with the pads.

7.4.2.3 Thermo-compression Bonding (Step 4)

Thermo-compression bonding is performed using a conventional flip-chip bonding

reflow profile. Glassy PSAS become compressed during the reflow process, and the
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gap between the chip and substrate decreases. This causes the solder array to make

contact with the corresponding pads.

7.4.2.4 Flux/PSAS Removal via Water and Acetone Bath w/ Agitation (Step 5)

The bonded sample is submerged in a warm water bath and agitated. The water-

soluble flux residue is removed during this process. Next, the sample is submerged in

an acetone bath and agitated. The photoresist-based PSAS are dissolved.

7.5 Method and Results

The objective of this work is to demonstrate that self-alignment structures can be used

sacrificially and that the technique can be applied in thermo-compression bonding

of a solder ball array. Experiment details are outlined in Table 7. The technique is

demonstrated in three parts:

1. The ability to correct misalignments beyond what is possible with conventional

solder ball assembly techniques is verified; a lateral misalignment as large as

150 µm (five times the radius of the solder balls) is intentionally induced during

chip placement. After applying a small compression force to induce the self-

alignment mechanism, the relative positions of the substrates are determined

using an x-ray tool, and the self-alignment process is verified (Steps 1-3 in

Figure 119).

2. Compatibility with a thermo-compression bonding process is verified; three self-

aligned chips (from the first set of experiments) and the electrical connectivity

between the chip and the substrate are verified using daisy chain structures and

four point measurements (Step 4 in Figure 119).

3. The ability to use the PSAS sacrificially is verified; the assembled samples are

submerged in a resist remover solution to ensure that PSAS can be removed after
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Figure 119: Experiment to verify the self-alignment capability.
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Table 7: Experiment Details
Chip Parameters
Top Chip Dimensions 1.8 cm x 1.6 cm
Bottom Chip Dimensions 2.7 cm x 2.7 cm
Chip Thicknesses 500 µm

Silicon Wafer Type <100> n-type doped
Solder Parameters
Solder Type Sn60Pb40

Solder Deposition Method Electroplating
Solder Diameter 60 µm

Solder Height (Pre-reflow) 18 µm

Array Size (row x col = total) 130 x 84 = 10920
Pad Parameters
Top Chip UBM
(Below Solder) 1-2 µm of Ni

1 µm of Cu
(Above Si Nitride) 50 nm of Ti
Bottom Chip Pad Materials
(Top Exposed Layer) 30 nm of Au

1-2 µm of Ni
1 µm of Cu

(Above Si Nitride) 50 nm of Ti
Assembly Parameters
Pre-bonding Gap 28 µm

Bonding Force 4 N
Flux Indium Corporation FC-NC-HT-A1

the assembly process. The assembled samples are separated and microscopically

examined (Step 5 in Figure 119).

7.5.1 Misalignment Correction

The objective of this section is to verify that the PSAS and pits can correct initial

misalignments larger than the self-alignment capabilities of a solder ball array. Typ-

ically, solder ball arrays can correct misalignments that are equal to or less than the

radius of the largest solder balls used during the bonding process, and a highly accu-

rate alignment accuracy can be achieved if the process is optimized [83]. However, it

is often desirable to have smaller solder balls with small pitches, while attaining the
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alignment capability of larger solder balls. For example, an application may require a

dense array of solders with 30 µm diameters as well as a self-alignment capability that

can correct up to 150 µm of misalignment. Using the conventional process, only up

to 15 µm of misalignment can be corrected in such case, and a misalignment greater

than 15 µm may result in solder balls becoming assembled with wrong pads.

Using the PSAS and pits, it is possible to decouple these two requirements. To

demonstrate this, three samples are aligned with an intentional misalignment of

60 µm (2x r
solder

), 120 µm (4x r
solder

), and 150 µm (5x r
solder

). The r
solder

repre-

sents the radius of the solder balls, which is 30 µm. The intentional misalignment

is induced using a flip-chip bonder and the images captured using the bonder’s bi-

directional camera before the chip placement are shown in Figure 122. For easy

comparison, Figure 120 shows the mask design with the perfect alignment, and Fig-

ure 121 shows the perfectly aligned image captured by the bi-directional camera.

Solder Ball Top Chip Traces
Bottom Chip
Probe Pads

PSAS

Pit

Figure 120: The mask design of the chips used to show the perfectly aligned features
on two substrates.

Each chip is released from the vacuum tool after being placed on top of a pad

array with the intentional misalignment. Next, a small weight is applied to the top
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PSAS

Pit

Solder Ball
(covered by traces) Top Chip Traces

Bottom Chip
Probe Pads

Figure 121: The overlay captured by the flip-chip bonder’s bi-directional camera
show substrates that are perfectly aligned.

chip until a “click” sound is heard. At this point, the chip becomes locked in position

and cannot be moved laterally.

Figure 122 show images captured before and after the bonding process with various

initial misalignments that are intentionally introduced. In all three cases, the x-ray

images show that solder balls are placed and bonded to the intended pads despite

large misalignments. Figure 123 shows the bonded chip on the substrate.

7.5.2 Thermo-compression Assembly and Electrical Connectivity

The objective of this section is to verify that the PSAS and pits are compatible with

the thermo-compression bonding process; the bonding quality (i.e., resistance) of the

solder balls and the yield are measured. Using the three samples from the first set

of experiments, thermo-compression bonding is performed. A constant compression

force (4 N) was used, and the reflow temperature profile used is shown in Figure 124.

Two types of electrical structures are built-in to the chips and substrates:
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1. Daisy chain structures are used to verify that the bonding process provides high

yield. Daisy chain sizes ranging from 84 solder balls to 10,920 solder balls are

designed in the layout.

2. Four point resistance measurement structures are used to verify that high-

quality bonds have been formed.

The electrical measurements are shown in Table 8. The results show that high

quality solder bonds are formed, and that the yields calculated from the daisy chain

measurements are 100 %. Subsequent detaching of the chip and substrate shows that

100 % of the solder balls (including the pads underneath) are transferred from the top

chip to the bottom chip, which indicates that the newly formed bonds are stronger

than the adhesion strength of the evaporated titanium and copper on a silicon nitride

surface.

Table 8: Resistance Measurements and Bonding Yield
Sample 1 w/ 60 µm of Initial Misalignment
R

solderball

+R

contact

8.92 m⌦
Standard Deviation 1.50 m⌦
Yield calculated from Daisy Chain 100%
Sample 2 w/ 120 µm of Initial Misalignment
R

solderball

+R

contact

8.42 m⌦
Standard Deviation 0.96 m⌦
Yield calculated from Daisy Chain 100%
Sample 3 w/ 150 µm of Initial Misalignment
R

solderball

+R

contact

8.42 m⌦
Standard Deviation 0.96 m⌦
Yield calculated from Daisy Chain 100%

7.5.3 PSAS Removal

The objective of this section is to verify that the PSAS can be removed after thermo-

compression assembly. Since PSAS are made of photoresist, the structures’ presence

beyond the assembly process can cause reliability issues, and they must be removed.

However, while photoresists can typically be removed easily, there are two factors that

148



may a↵ect the ability to remove PSAS: the temperature of the bonding process and

the gap between the chip and the substrate. As such, the removal process warrants

verification.

Flux is removed prior to the removal of the PSAS. Solder flux from the Indium

Corporation is used and can be removed by a warm water bath with a gentle agitation.

To remove the PSAS, the bonded samples are submerged in resist remover solvent.

Figure 126 shows an image of detached chips that underwent the PSAS removal

process. The image shows that the PSAS are completely removed.

7.6 Conclusions

A thermo-compression bonding of a solder ball array is demonstrated using sacrifi-

cial positive self-alignment structures and inverted pyramid pits. By intentionally

introducing a lateral misalignment greater than what is correctable with the surface

tension of solder balls, the ability to correct up to 150 µm of misalignment using

PSAS and pits is experimentally verified. In addition, high-quality bonding is also

verified through electrical measurements, and the ability to remove the PSAS after

the bonding process is visually verified.
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PSAS

Pit Intentional
Misalignment

Bottom Chip
Probe Pads

Solder BallTop Chip Traces

Bottom Chip Pads/Traces

Solder Ball

PSAS inside 
Pit

Image showing 60 µm (two times the solder ball radius) of intentional misalignment.

Intentional
Misalignment

Image showing 120 µm (four times the solder ball radius) of intentional
misalignment.

Intentional
Misalignment

Image showing 150 µm (five times the solder ball radius) of intentional
misalignment.

Figure 122: Images showing the misalignment correction.
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Figure 123: Photo showing four pairs of bonded chips.
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Figure 124: Reflow profile used for the assembly process.
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No connection 
to 4th solder ball

Figure 125: X-ray image showing four point probe structures to measure the resis-
tance of a single solder ball including the contact resistance.

Figure 126: SEM and microscope images of detached chips show that the PSAS are
completely removed.
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CHAPTER 8

FUTURE WORKS

This chapter describes opportunities for advancing the technologies in this disserta-

tion. In the first section, opportunities to advance MFIs and PSAS are described. In

the second section, opportunities to advance the platform are described.

8.1 Silicon Interposer Tiles and Bridges Platform

8.1.1 Co-fabrication of PSAS and MFI

For the demonstration in this work, MFIs and pits are fabricated on the same side

of the interposer tiles. This is partially due to the di�culty of forming PSAS and

MFIs at the same time; when PSAS are formed after the MFIs have been released,

the photoresists trapped under the MFIs (Figure 127) become impossible to remove

without damaging the PSAS.

!"#$%&'()*+,-,."#$#-)

Figure 127: A trapped photoresist under an MFI during the co-fabrication process.

There are several significant advantages to being able to form PSAS and MFIs
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on the same wafer side. First, since the motherboard can only contain PSAS and

not pits, this is the first step in being able to fabricate MFIs on an FR4 substrate.

Second, the configuration can become more versatile, and a stacking of 3 or more

substrates becomes possible without having to fabricate PSAS and/or MFIs on both

sides of a single substrate.

8.1.2 Nanophotonics Integration

The alignment and electrical interconnectivity have been demonstrated on the bridged

platform. To demonstrate the platform’s advantage over conventional systems, nanopho-

tonics must be integrated into the interposer tiles and bridges. Once nanophotonics

are integrated, the performance should be benchmarked against electrical intercon-

nects for systems with varying numbers of interposer tiles.

8.1.3 RF Characterization of Electrical Interconnects

The RF characteristics of MFIs on silicon interposer tiles and bridges must be inves-

tigated. The design of the current MFIs focuses on mechanical performance, and its

high frequency characteristics may require a significant modification to its geometry.

A testing setup, as shown in Figure 128, may be used.

Also, the benefit of silicon bridges may be quantified by comparing the perfor-

mance of the electrical path through the silicon bridge with the electrical path through

the motherboard via TSVs and motherboard traces.

8.1.4 Micro-fluidic Cooling on Silicon Interposer Tiles

A large system containing multiple silicon interposer tiles may be challenging to cool

using conventional air heat sinks. Therefore, micro-fluidic heat sinks may need to be

integrated into silicon interposers.

Solder-based microfluidic I/Os have been reported [84], in which a thermo-compression

bonding process is used to form fluidic pipes between two substrates. The technique
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Figure 128: An RF testing setup for the bridged silicon system.

developed in Chapter 8, in which PSAS are used for a thermo-compression bonding,

may prove to be useful if such technology is integrated into silicon interposer tiles.

8.1.5 Elongated Pits and PSAS for Thermo-mechanical Compliance

While the PSAS and pits provide an accurate alignment at a given temperature,

undesired changes may occur when the temperature changes. Four modes of such

changes are described in Figure 129. To address this, elongated pits may be formed

instead of pits. Elongated pits would allow the PSAS to move in only one degree

of freedom, and if positioned appropriately, would allow the assembled substrates to

expand freely without warping or being lifted in an uncontrolled manner due to the

CTE match (Figure 130).

8.2 MFI

8.2.1 MFI Scaling

This work demonstrated a novel process for forming a flexible interconnect with the

focus being on vertical deflection. This technique must be scaled down to provide the
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Figure 129: The CTE mismatch between the silicon and FR4 substrate causes un-
desirable e↵ects.

Figure 130: Elongated pits can completely eliminate the e↵ect of the CTE mismatch.
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pitch and the bandwidth required for high-performance systems.

There are several potential challenges. First, smaller MFIs may not be able to

provide the same amount of elastic vertical deflection range; instead, the vertical

stand-o↵ height and the thickness may also need to be scaled down. Second, pat-

terning MFIs on a curved surface may be di�cult since the dimensions of the MFIs

are reduced; alternative methods, such as spray coating may be required. Finally,

electro-deposition may be di�cult because of the small openings on the electroplat-

ing mold; plasma deposition methods such as sputtering must be explored, which can

also provide more uniform mechanical characteristics throughout the wafer.

8.2.2 Vertical Pads

The mechanical characteristics of conventional flexible interconnect structures have

conflicting requirements. While it is desirable to have a high vertical compliance

and high vertical elastic range of motion to reduce the internal stress on the flexible

interconnect structure, it is also desirable to have a low compliance to make sure the

contact resistance between the interconnect and the pad is minimized. By fabricating

the pads as shown in Figure 131, the problem of these conflicting requirements can

be resolved.

Figure 131: MFIs make contact with the sides of the pads. The lateral compliance
determines the contact resistance, while the vertical compliance can be increased to
reduce stress.
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The key component in this process is the presence of tall pads; instead of flexible

interconnects making contact with the top/bottom planes of the pads, the contacts

occur on the side of the pads. This means that the contact resistance (which is

inversely proportional to the contact force) between the pads and the flexible inter-

connects is determined by the in-plane compliance of the flexible interconnect, while

the vertical compliance is still responsible for overcoming the non-uniform surface.

This is significant because the vertical compliance is mainly a↵ected by thickness,

while the lateral compliance is a↵ected by the width of the flexible interconnect; by

designing the flexible interconnects to have a wide but thin structure, a high vertical

elastic range-of-motion and low contact resistance can be achieved.

In their simplest form, the pads can be tall pillar like structures. However, by

shaping the pads as shown in Figure 132, they can also be used to hold two chips

together. In the latter configuration, MFIs may also bend upwards, increasing the

elastic range-of-motion after assembly.

Figure 132: Clamping pads provide the benefits of vertical pads and also prevents
MFIs from being disconnected unintentionally.

Vertical pads also addresses the inherent challenges in designing MFIs; as MFIs

become taller, it becomes di�cult to assure that the tip is the highest point during

most of its deformation. By using tall vertical pads, the tip no longer needs to be the
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tallest part during the deformation process to ensure a good electrical contact.

8.3 PSAS

8.3.1 Gap Measurement

The gap between two substrates is a critical parameter for silicon nanophotonics.

While this work has demonstrated that PSAS can accurately align two substrates

laterally, additional work is necessary to measure and control the gap that is produced

by the PSAS and pit technology.

This work should begin by developing a novel method of measuring gaps between

substrates. A conventional method, such as examining a cross-sectional image of the

assembled substrates, is not adequate because the angle of the cut a↵ects the result

significantly. Instead, a highly precise method is required.

Next, the uniformity of the PSAS must be controlled to improve the control over

the gap. While the precision of the lateral alignment accuracy is quite insensitive to

the uniformity of the photoresist layer, the gap is highly a↵ected; the 10% variation

in the thickness would be translated into a significant variation in the gap that is

produced by the PSAS-pit pairs in a single wafer. A novel photoresist deposition

method, such as spray-coating, may be used.

8.3.2 Alignment Accuracy Measurement Improvement

Improving the lateral alignment accuracy of the PSAS technology is also desirable.

One major source of inaccuracy is from the misalignment introduced during the

feature-to-feature alignment of the pits or PSAS to the traces containing the vernier

patterns. This can be improved by using a more advanced mask aligner; however,

because of the large PSAS thickness, it is impossible to focus on both the mask and

the traces, which makes the accurate alignment di�cult.
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8.3.3 Metal-based PSAS

While photoresist-based PSAS have advantages, such as compressibility and remov-

ability, it may be desirable to have PSAS that are more reliable under elevated tem-

peratures and other operating conditions. A metal-based PSAS is ideal in such situ-

ations.

However, forming a metal-based PSAS is challenging because electroplating is

the only viable process for forming such a large metal-based structure. Electroplat-

ing, however, is an inherently non-uniform process, and extraordinary measures are

required to ensure that the resulting structure is exactly as intended. Below, two

potential methods of fabricating accurate metal-based PSAS are described.

8.3.3.1 Metal PSAS via Inner Plating

The first method begins with the photoresist-based PSAS fabricated on top of a

seed layer (Ti/Cu/Ti). After the reflow, the PSAS is exposed, which makes the

entire structure removable using a developer solution. A glass layer is evaporated or

sputtered, and a thick photoresist layer is spin-coated. A small hole is patterned on

the photoresist to reveal the glass layer on PSAS. An RIE process is used to etch away

the glass layer, which exposes the PSAS photoresist. The sample is then submerged

in a developer to remove the photoresist PSAS. The sample is electroplated using the

newly exposed seed layer. The process flow is shown in Figure 133.

8.3.3.2 Metal PSAS via Double Exposure

The second method begins with a photoresist-based PSAS (unexposed). A mask with

a small hole is used to expose the center of the PSAS, and the developed center is

developed way. The resulting structure is shown in Figure 134. A metal seed layer

and a glass layer are evaporated under a high pressure environment to minimize the

deposition on the side wall of the hole. Acetone is used to remove the PSAS and

results in the suspended metal and glass layers. Electroplating the sample begins
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Figure 133: Process flow for forming metal PSAS via inner plating.

forming metal from the suspended layers, which results in a smooth PSAS surface.

The process flow is shown in Figure 135.

Figure 134: Double exposed PSAS with a center hole.
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Figure 135: On the left is an optical microscope image of the SU8 mold and on the
right is an optical microscope image of the resulting stamped elastomer structure.
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CHAPTER 9

CONCLUSION AND CHAPTER SUMMARIES

9.1 Conclusion of the Thesis

A novel large-scale silicon system platform with 9.6 cm

2 of active silicon interposer

area is demonstrated. The platform contains three interposer tiles and two silicon

bridges, and a novel self-alignment technology and a novel flexible interconnect tech-

nology are developed and used to align and interconnect tiles and bridges on an

FR4 substrate. An accurate alignment (<8 µm) between the silicon bridges and

interposer tiles makes it possible (with additional improvements) to accommodate

nanophotonics to enable a high-bandwidth, low-energy system in the future. In ad-

dition, mechanically flexible interconnects and silicon bridges are used to provide

electrical connections between interposer tiles without having to use motherboard-

level interconnects.

Finally, an elastomeric bump interposer is developed to enable the packaging of

PSAS-enabled silicon systems, and PSAS’ compatibility with a thermo-compression

bonding process is demonstrated to enable a wide range of system configurations

involving interposer tiles and bridges, including the multi-chip package configuration

used with the elastomeric bump interposers.

9.2 Chapter Summaries

In addition to the platform demonstration (Chapter 5), the following novel intercon-

nect and packaging components are developed:
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9.2.1 Through-silicon Via (TSV)

In Chapter 2, a novel TSV technology for silicon interposers is demonstrated. The

“mesh” technique makes the seed-layer formation e�cient, and the chemical-only

planarization becomes possible by electroplating with two metals. The benefits of

this TSV process are demonstrated in two ways. First, the CMOS compatibility

of the process is demonstrated by fabricating the TSVs in TSMC 0.35 µm CMOS

ICs. Second, the versatility of the “mesh” process is demonstrated by extending the

technology to form polymer-cladded TSVs.

9.2.2 Mechanically Flexible Interconnects

In Chapter 3, a novel flexible interconnect technology called mechanically flexible

interconnects (MFIs) is developed. The first generation of MFIs (“MFIv1”) has a

stand-o↵ height of 20 µm and incorporates the tapered and curved designs to increase

the vertical elastic range of movement; a novel sacrificial reflowed photoresist process

is developed to enable the fabrication of curved MFIs, and the benefit of the tapered

design is analyzed. Mechanical FEM simulations and measurements are performed

to verify that only a small amount of plastic deformation is experienced by MFIv1

when it is deflected 20 µm vertically. The fabrication process to form and confine

solder balls at the tips of MFIs is also developed.

The second generation of MFIs (“MFIv2”) has a stand-o↵ height that is greater

than 60 µm and incorporates both the reverse-tapered and tapered designs. The

reverse-tapered region of the design produces a bending profile that allows the vertical

range of motion to be increased significantly, while the tapered region of the design

reduces the maximum stress to minimize plastic deformation. The pitch is doubled

by forming MFIs on both sides of the curved surface, and pointy tips are produced

by avoiding the flat regions at the top of the sacrificial photoresist. The resistance of

a single MFIv2, including the contact resistance with the pointy tip, is measured.
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9.2.3 Positive self-alignment Structures

In Chapter 4, a novel self-alignment technology is fabricated, and the accuracy of the

technology is experimentally demonstrated between a silicon substrate and silicon,

glass, and FR4 substrates. A stack of silicon substrates is also aligned and its ac-

curacy measured. An accuracy of <4 µm is consistently demonstrated between two

silicon substrates (including in a 3D configuration), and <5 µm of misalignment is

demonstrated between a silicon substrate and an FR4 substrate.

In Chapter 7, thermo-compression bonding of a solder ball array is demonstrated

using sacrificial positive self-alignment structures (PSAS) and inverted pyramid pits.

By intentionally inducing a lateral misalignment greater than the self-alignment ca-

pability of the solder joints, the ability to correct up to 150 µm of misalignment using

PSAS and pits is experimentally demonstrated. In addition, the high quality bonding

is verified through electrical measurements, and the ability to remove the PSAS after

the bonding process is visually verified.

9.2.4 Elastomeric Bump Interposer

In Chapter 6, a low-cost elastomeric bump interposer that minimizes the warpage

of substrates aligned using PSAS is designed, fabricated, and tested. These inter-

posers apply a precise amount of force at precise locations to keep the PSAS and

pits reliably engaged and to enable a batch assembly and alignment of PSAS-enabled

multi-chip packages. The design of the interposers is optimized using FEM, and mul-

tiple elastomeric bumps and sti↵ening tungsten layers are used to further minimize

the substrate warpage.
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APPENDIX A

DERIVATION OF BENDING PROFILES

A.1 Straight Cantilever

This section derives the elastic curve of a cantilever with a constant width and a

constant thickness.

M(x) = �P (L� x) (17)

I(x) = I0 (18)
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dx
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A.2 Tapered Cantilever

This section derives the elastic curve of a cantilever with a linearly tapering width

and a constant thickness.
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A.3 Reverse Tapered Cantilever

This section derives the elastic curve of a cantilever with a linearly increasing width

(from anchor to tip) and a constant thickness.
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