Heterogeneous Integration (2.5D and 3D)
Heterogeneous Integration (2.5D and 3D)
There is an ever increasing need to integrate multiple dice of various functionalities, including ASICs, CPUs, GPUs, FPGAs, microsensors, photonics, MEMS, and RF components into a single package. This need has spurred significant (perhaps exponential) research in heterogeneous interconnection platforms including 2.5D and 3D. In this thrust, we develop heterogeneous integration architectures that enable the interconnection of multiple dice (or “chiplets”) of various functionalities in a manner that mimics or exceeds monolithic-like performance, yet utilizes advanced off-chip interconnects and packaging to provide flexibility in IC fabrication and design, improved scalability, reduced development time, and reduced cost. Due to yield, cost, time to market, power dissipation, and performance considerations, 2.5D and 3D heterogeneous integration of chiplets represent a new phase for Moore’s Law. The goal of our research in this thrust is to develop radical new 2.5D and 3D heterogeneous integration architectures for electronics, photonics, and mm-wave technologies.
Relevant Publications
A. Kaul, Y. Luo, X. Peng, M. Manley, Y.-C. Luo, S. Yu and M. S. Bakir, "3-D Heterogeneous Integration of RRAM-Based Compute-In-Memory: Impact of Integration Parameters on Inference Accuracy," in IEEE Transactions on Electron Devices, vol. 70, no. 2, pp. 485-492, Feb. 2023, doi: 10.1109/TED.2022.3231570.
T. Zheng, A. Kaul, S. Kochupurackal Rajan, and M. S. Bakir, "Polylithic Integrated Circuits using 2.5D and 3D Heterogeneous Integration: Electrical and Thermal Design Considerations and Demonstrations," in B. Keser, and S. Kröhnert (Ed.), Embedded and Fan-Out Wafer and Panel Level Packaging Technologies for Advanced Application Spaces (pp. 261-287) Wiley, 2021.
J. L. Gonzalez, J. R. Brescia, T. Zheng, S. Kochupurackal Rajan and M. S. Bakir, "A Die-Level, Replaceable Integrated Chiplet (PINCH) Assembly Using a Socketed Platform, Compressible MicroInterconnects, and Self-Alignment," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 11, no. 12, pp. 2069-2076, Dec. 2021.
T. Zheng, P. K. Jo, S. Kochupurackal Rajan and M. S. Bakir, "Electrical Characterization and Benchmarking of Polylithic Integration Using Fused-Silica Stitch-Chips With Compressible Microinterconnects for RF/mm-Wave Applications," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 11, no. 11, pp. 1824-1834, Nov. 2021.
T. E. Sarvey, Y. Hu, C. E. Green, P. A. Kottke, D. C. Woodrum, Y. K. Joshi, A. G. Fedorov, S. K. Sitaraman, and M. S. Bakir, "Integrated circuit cooling using heterogeneous micropin-fin arrays for nonuniform power maps," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 7, no. 10, pp. 1617-1624, Oct.2017
M. Zia, T. Chi, J. Park, A. Su, J. L. Gonzalez, P. K. Jo, M. P. Styczynski, H. Wang, and M. S. Bakir, "A 3D integrated electronic microplate platform for lowcost repeatable biosensing applications," IEEE Transaction on Components, Packaging and Manufacturing Technology, vol. 6, no. 12, pp. 1827-1833, Dec. 2016.
X. Liu, P. Thadesar, C. Taylor, M. Kunz, N. Tamura, M. Bakir, and S. Sitaraman, "Experimental stress characterization and numerical simulation for copper pumping analysis of through silicon vias (Invited)," IEEE Transaction on Components, Packaging and Manufacturing Technology, vol. 6, no. 7, pp. 993-999, July 2016
H. S. Yang, C. Zhang, and M. Bakir, "Self-aligned silicon interposer tiles and silicon bridges using positive self-alignment structures and rematable mechanically flexible interconnects", IEEE Transaction on Components, Packaging and Manufacturing Technology, vol. 4, no. 11, pp. 1760-1768, Nov. 2014.
M. S. Bakir, H. A. Reed, A. V. Mule, P. A. Kohl, K. P. Martin, and J. D. Meindl, "Sea of Leads (SoL) characterization and design for compatibility with board-level optical waveguide interconnection," in Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat. No. 02CH37285), 2002: IEEE, pp. 491-494.
H. A. Reed, M. S. Bakir, C. S. Patel, K. P. Martin, J. D. Meindl, and P. A. Kohl, "Compliant wafer level package (CWLP) with embedded air-gaps for sea of leads (SoL) interconnections," in Proceedings of the IEEE 2001 International Interconnect Technology Conference (Cat. No. 01EX461), 2001: IEEE, pp. 151-153.